
OR I G I NA L A RT I C L E
Jou rna l Se c t i on

Opportunities for Software Reuse in an Uncertain
World: FromPast to Emerging Trends

Rafael Capilla1* | Barbara Gallina2† | Carlos Cetina3‡

| John Favaro4§

1Universidad Rey Juan Carlos, Madrid,
Spain
2Mälardalen University, Västerås, Sweden
3Universidad San Jorge, Zaragoza, Spain
4Intecs, Pisa, Italy

Correspondence
Rafael Capilla, Department of Computer
Science, Universidad Rey Juan Carlos,
28933,Mostoles, Madrid, Spain
Email: rafael.capilla@urjc.esail.com

Funding information

Much has been investigated about software reuse since the
software crisis. The development of software reuse meth-
ods, implementation techniques and cost models has re-
sulted in a significant amount of research over years. Never-
theless, the increasing adoption of reuse techniques, many
of them subsumed under higher level software engineering
processes, and advanced programming techniques that ease
the way to reuse software assets, have hidden somehow
in the recent years new research trends on the practice of
reuse and caused the disappearance of several reuse confer-
ences. Also, new forms of reuse like open data and feature
models have brought new opportunities for reuse beyond
the traditional software components. From past to present,
we summarize in this research the recent history of software
reuse andwe report new research areas and forms of reuse
according to current needs in industry and application do-
mains, aswell as promising research trends for the upcoming
years.
K E YWORD S

Software reuse, domain analysis, software asset, reusability

1 | INTRODUCTION

Since the software crisis late in the 1960s andMcIlroy‘s idea to envision the reuse of code and software components it
has been a long story where researchers and practitioners have experimentedwith different forms of reuse.

1

2 AUTHORONE ET AL.

The Birth of Software Reuse. Software engineering celebrated its fiftieth anniversary in 2018. It was in 1968 that
the NATOConferencewas held in Garmisch, Germanywhere the termwas born [1]. The anniversary was commem-
orated with a special issue in IEEE Software Magazine [2]. Consequently, 2018 was also the fiftieth anniversary of
software reuse, because it was during that same conference that DougMcIlroymade the presentation, called “Mass
Produced Software Components” [3], that is considered to be the genesis of software reuse. The leader of the American
delegation to that conference was Alan Perlis, another pioneer of software reuse who in 1987 co-edited with Ted
Biggerstaff the two-volume Software Reusability, which effectively consecrated reuse as a formal discipline [4]. Shortly
after the publication of Software Reusability, a referencemodel for reuse known as the “3Cmodel” was elaborated by
aworking group [5]. It obtained its first broad exposure in a publication in 1991, where it was stated that “. . . the 3C
referencemodel has the potential to become the accepted basis for discourse on reusable software components among
members of the reuse community.

The 3Cmodel desribed in Figure 1 defines and distinguishes three ideas: concept, content, and context. [5] [6]

• In the simplest terms, Concept is a reusable component’s specification, “what it is”. This has led to formal component
specifications andmuchmore.

• Early on the key idea emerged of separating the specification from the implementation, the Content – “how it
works”. The iconic example is a stack implemented variously as an array, a linked list, and so forth.

• Finally, the Context indicates “how it is used”. The explosion of the Ariane 5 rocket back in the 1990s was a famous
case of a software component from the Ariane 4 being reused in the wrong Context [7].

It is notable how this simple reference model became a kind of road map for the next twenty-five years of research
in software reuse. Over those years, researchersmade remarkable progress in all three dimensions of the reference
model, producing libraries, frameworks, methodologies, generators, product families – an entire set of sub-disciplines
that characterize software reuse as we know it today.

F IGURE 1 The 3Cmodel contextualizing software reuse

TheDeath of Software Reuse? Another pioneer in software reusewas Rubén Prieto-Diaz, who applied the ideas of

AUTHORONE ET AL. 3

faceted classification libraries to reuse repositories [Ruben1991], and also had significant involvement in the launching
the field of domain analysis[8]. Approximately 25 years after the seminal paper ofMcIlroy, at the Third International
Conference on Software Reuse in 1994, Prieto-Diaz presented a paper entitled “The Disappearance of Software
Reuse”[9], which began with the statement, “I am looking forward to the day when software reuse is dead.” (The
accompanying presentation included a depiction of a tombstone inscribed with “RIP Software Reuse”). The central
argument of the paper was that “ . . . the ultimate success of software reuse will bemarked by its disappearance. This
disappearance will not come by elimination but by integration.” This argument was accompanied by seven predictions:

1. Reuse will become systematic, formal, and integrated with software engineering;
2. Many organizations will establish their corporate reuse programs;
3. Software development environments and CASE tools will support reuse, domain analysis, and domain engineering;
4. A reusable parts industry for specialized domains will emerge;
5. Software development standards will evolve to support reuse within and across domains;
6. Domain engineering will be the dominant discipline in software engineering;
7. Software reuse will cease to exist.

It is fair to say (Prediction 4) that much large commercial software development now involves large frameworks, as
well as component libraries and connectors that permit the assembly of sophisticated applications in a short amount
of time. The major software standards (Prediction 5) now include requirements for reuse (cf. Section 3.4) – albeit
cross-domain reuse somewhat less. The success of product line engineering (Prediction 6) is there for all to see (cf.
Section 3.1). This leaves us with the last prediction. The intended sense of Prieto-Diaz by that prediction has already
been explained above, but in fact, this prediction did imply a death: the death of software reuse research. As the other
predictions were gradually realized over the years, the question of whether reuse research would die no longer seemed
unreasonable. And sure enough, over the last few years, there have beenmore andmore people openly questioning
whether therewas any significant research in software reuse left to do, which is directly related to the decline in number
of reuse conferences. It is the thesis of this paper that, to paraphraseMark Twain, “reports of the death of software
reuse research are greatly exaggerated.” On the contrary, there is a whole new set of opportunities that are slowly but
surely emerging for software reuse research. The new opportunities are coming from the growing ambition to practice
software reuse in areas in which uncertainty is a significant defining characteristic.

Anuncertainworld: For the first 25 years of the 3C referencemodel, therewas always the implicit assumption that
it was possible to precisely and completely specify a reusable component; that it was possible to completely understand
the implementation of a component; and that it was possible to identify the complete context in which the component
would be reused. This assumption of certainty in all three dimensions was also considered to be a necessary condition
for doing reuse. But this assumption has been breaking down, not because of necessity, but because of a growing
ambition to reuse in circumstances where this assumption does not hold –wherewe don’t necessarily know for sure
what it is; or how it works; or howwewill use it. This is true in all three dimensions of reuse.

The remainder of this paper is as follows. Section 2 describes main trends on software reuse research and practice
over the past 30 years while in Section 3 we report on recent trends related to other software engineering practice
areas. In Section 4 we discuss some promising application domains where software reuse is succeeding, and in Section 5
we report on the results of a survey with reuse practitioners to highlight the role of software reuse in industry. Finally,
Section 6 outlines a research roadmap for the future of reuse andwe draw conclusions in Section 7.

4 AUTHORONE ET AL.

2 | EARLY FORMS OF SOFTWARE REUSE

Formore than 30 years software reuse was a popular software engineering research field and practice area in industry.
From the visionary ideas ofMcIlroy up through the 1990s several forms of reuse were investigated. In this section we
present themajor forms of software reuse that were popular in conferences like theWorkshop on Institutionalizing
Software Reuse (WISR), Symposium on Software Reusability (SSR), the European Reuse Workshop (ERW) and the
International Conference on Software Reuse (ICSR), as major software reuse research events. Instead of a long report
about past research on software reuse [10], we summarize under themain achievements under the following fourmajor
categories.

2.1 | Domain Analysis

The role of domain analysis (DA) techniques has been crucial for understanding reuse of high-level abstraction artifacts
andknowledge. Domain analysiswas initially understoodas a technique to identify the set of relevant objects and operations
in a particular domain.1 Hence, building and reusing software in "unknown" or complex domains (e.g. critical systems),
domain analysis was proven as a human and complex technique to understand the terminology, elements and processes
for building and reusing software systems and, in particular, a way to understand a particular domain by software
engineers whomust rely on the domain experts. From early domain analysis methods [Arango 1991] like Prieto-Díaz’s
Sandwichmethod [8] where the identification of the relevant objects and operations were critical for knowledge reuse,
the classification of the terms discovered (e.g. faceted classification [8] [11]) and the implementation of the processes
and operations for engineering complex systems, many of themwith incipient object-oriented techniques, was crucial
for modern software reuse practice in industry. Over years, several DA processes have been proposed, but most of the
authors failed to explain how to carry out such human and complex manual activities, such as knowledge reuse [12] [13].
In order to bring DA activities closer to other software engineering processes, the so-called domain engineering (DE)
process [14] [15] encompasses domain analysis with the development and reuse of different software artifacts in amore
systematic way for producing reusable information. Approaches like DARE (Domain Analysis and Reuse Environment)
[16] were proposed years later to integrate domain analysis processes under CASE tools and exploit the commonalities
and variabilities of software systems and capturing the domain information from experts, documents, and code. Hence,
such commonalities and variabilities are the basis of current featuremodeling approaches.

Nevertheless, the importance of capturing the essence of software systems andmodeling the problem domain is
one of themain reasons why these techniques still survive nowadays. Although domain analysis practice enables the
identification of the relevant domain elements and system features that can be reused across different applications, the
majority of reuse approaches concentrate on the code and architecture rather than domainmodels.

2.2 | Generators and TransformationModels

One complementary way to achieve software reuse in addition to component and code reuse is to employ generative
and transformation techniques. Formany years, code generators have beenwidely used to produce executable code
based on reusable code that is customized via templates. Early approaches like DRACO [17] [4], a methodology for
engineering reusable systems and GenVoca [18] (a generator for defining high level constructs in a high level language)
for synthesizing software systems pioneered transformational approaches. A second generation of these tools produced
popular 3GL and 4GL generators (e.g. CLIPPER, DATAFLEX) aimed at transforming abstract into concrete programs
1ADomain represents an area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners in that area.

AUTHORONE ET AL. 5

leveraging code reuse and speeding up the task of programmers. In addition, significant effort has been expended to
create a variety of domain-specific languages and code generators usingmoremodern techniques likeModel-driven
Engineering (MDE) approaches, which are still used to increase reuse when transforming code constructs from one
programming language to another. However, as writing code generators and transformation rules is difficult and costly,
many of the today’s code generators have been replaced by reusable libraries and components. Other generative
methods and tools combinedwith component-based development as approaches to leverage code reusability can be
found in [19].

2.3 | Components, Languages, and Code Reuse

Several high level artifacts like reusable architectures, software schemas, and abstractions in high and very high level
languages (VHLLs) such as Smalltalk,ML, SETL orMODEL have been attempted over the years, such as described in [10].
However, code and component reuse have proven to be easier andmore productive than other higher level reusable
artifacts.

Code reuse is one of themost primitive forms of reuse as a way to avoid writing duplicate code and committing
programming errors. Reusing code is not a complex practice if done systematically (as opposed to "ad-hoc" reuse).
However, producing reusable code is costly and difficult, as the quality of the code must be extremely high, with
zero programming faults and time-consuming testing that the reusable code doesn’t fail. In addition, interoperability
issues when connecting the reusable codewith other code pieces in the system are amajor concern. According to [4],
several code reuse formswere proposed years ago. From subroutine libraries, compilers and parameterized systems,
the spectrum of reusability has been widening to envisionMcIlroy’s idea. Along with the evolution of programming
languages, software reuse has evolved since the appearance of C++ to provide additional facilities for programmers for
reusing code. Therefore, encapsulating larger functionality in code components has changed the paradigm of software
technology for programming in the largemore complex systems. Reuse technology has since evolved from reusing small
subroutines to large object-oriented (OO) components encompassing significant functionality that can be customized
for different application types (e.g. reusable APIs to create customized interfaces). Tomake reusability attractive, it
becomes necessary to reuse with information hiding where the complexity of large OO components is hidden from
the programmer via interfaces and parameterizedmodules to adapt the reusable code to different needs. The story
of reusable programming languages is a long one, from older languages like CLOOS, OBJ, ADA and Smalltalk tomore
recent ones like C++, Java or Python. A retrospective look at several reuse experiences and case studies can be found at
[20].

One popular form of reuse used for years was the Commercial Off-The-Shelf (COTS) approach, involving the
selection and use of COTS components as products, which could easily be installed and interoperate with existing
software components at a relatively lower cost. Variations of COTSwere also created, such as modifiable off-the-shelf
(MOTS) components (customizable assets to be adapted to any context). COTS developed for specific organizations (e.g.
GOTS, NOTS) were also developed and included in product-line approaches and service-oriented architectures [21].
Nevertheless, problems associated with integrating COTS from different vendors, as well as problemswith controlling
the evolution of COTS based systems due to a lack of support of COTS components, have been major obstacles to
achieving greater market penetration of COTS technology.

With the appearance of object-oriented programming (OOP), reuse of code artifacts evolved into component
reuse and component-based software engineering (CBSE) techniques where the reusable codewas encapsulated in
bigger reusable modules, libraries and frameworks. From early OO languages like SIMULA and Smalltalk in the 1960s
to C++/C# and VisualBasic in the 1980s andmore recently Java, theMicrosoft .NET platform or Python, reusability

6 AUTHORONE ET AL.

via software components was achieved through increased modularity, interoperability via standard interfaces, and
robustness. Therefore, the visionary idea ofMcIlroy [3] about software producedmassively using reusable software
components was realized to the fullest.

2.4 | Reuse CostModels

Given that one of the primary arguments put forward for software reuse has always been economic, it is not surprising
that research in this sub-discipline began early [22]. One of the earliest andmost influential attempts at constructing a
reuse cost model originated at the Software Productivity Consortium, which based the cost model on the economic
principle of time to payback – that is, the amount of time needed to achieve a break-even situation [23]. A payoff
threshold value was defined based upon estimations of the relative cost of developing a component for reuse and the
relative cost of integrating the component. This cost model was then used to analyze reusable components which varied
in complexity and integration cost, yielding correspondingly varied results in the time to payoff [24]. Subsequently,
cost models of increasing sophistication were introduced, in particular by Poulin [25] who explored the use of standard
financial metrics such as the internal rate of return in order to bring software reuse into a more standard business
context. A prominent exponent of this business-oriented approach was Lim, who introduced the widely accepted
financial measure of net present value and gave examples of its implementation in a reuse context [26]. The alignment
of the study of software reuse economics with standard business principles brought about an interest in strategic
aspects of software reuse – that is, the support that reuse could give to a company’s market strategies. This led in
turn to an application of Value BasedManagement to standard reuse management theory, and culminated in Value
Based Software Reuse Investment, in which the use of real options was investigated for the analysis of the benefits of
reuse for supporting strategic flexibility [27]. Interestingly, this line of investigation ultimately led a few years later to a
broadening of the application of value-based principles to the whole of software engineering [28].

Summary: Unfortunately, the integration of most of the reuse forms under more modern software engineering
practices like component models and software product line engineering practices brought about the disappearance of
themajority of software reuse conferences except for ICSR, which has been renewing topics and papers to adopt more
modern forms of reuse, as we discuss in next section.

3 | CURRENT AND NEW TRENDS IN SOFTWARE REUSE

Today, many software reuse processes have been subsumed or integrated under moremodern software development
approaches, and today’s application domains for building software have changed. For example, contextual knowledge
is widely exploited by autonomous and context-aware systems (e.g. robots, IoT); open source software systems have
emerged as an evolution of COTS systems; and data is driving industry 4.0 solutions (e.g. Big Data and Open Data
solutions). In this section, we describe four currentmajor trendswhere reuse is a common goal formodern development
approaches and systems.

3.1 | Product Lines, Features and Context analysis

Clements and Northop (2002) [29] define a software product line (SPL) as “a set of software intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribedway”. This notion has been reused in other contexts. For

AUTHORONE ET AL. 7

instance, in process engineering, the notion of process line [30] and its extension to safety-critical systems engineering
[31] was introduced.

A recent survey [32] reveals that most SPLs are built when there are already products. These legacy products are
usually, for instance, similar product variants that were implemented using ad-hoc reuse techniques such as clone-and-
own (CaO) [33]. CaO refers to the practice of reusing software by copying and adapting parts from legacy software
products to create a new software product. Version control systems, such as SVN and Git, have contributed to the
popularization of CaO bymeans of their branch andmerge functionality.

More andmore approaches perform Feature Location to extract reusable assets. This is the case of approaches for
extractive SPL adoption [34]. These approaches initiate the SPL through capitalization on existing software products. In
other words, products created under CaO settings are reengineered into a family of products where reusable assets are
formalized.

The public catalogue for Extractive SPL Adoption (ESPLA) case studies [35] reveals that the potential of reuse is not
only restricted to source code: documentation, designs, models, and components are examples of software artifacts that
are also being reused. A recent comparison of ESPLA approaches [36] identifies the following approaches as the ones
with support for reusable asset extraction: Pure::variants var. extractor [37], BUT4Reuse [38], and FLiMEA [39, 40].

The most general definition of the notion of feature was given by Kang et al. [41] : “a prominent or distinctive
user-visible aspect, quality or characteristic of a software system or systems”. Czarnecki and Eisenecker focus on
the Software Product Lines variants: “a system property that is relevant to some stakeholder and is used to capture
commonalities or discriminate among systems in a family”. Finally, Bosch [42] places an emphasis on system behavior: “a
logical unit of behavior that is specified by a set of functional and quality requirements”. Despite these system-centered
definitions, the notion of feature has been stretched in various ways in order to denote characteristics not necessarily
belonging to system software only but to any other artifact at any abstraction level of system engineering, including the
process model describing the system engineering itself.

It is widely recognized that domain analysis (DA) is one of the important activities in current SPL practice during
the domain engineering phase. However, the need tomodel system features and the fact that more andmore systems
applications are context-dependent (e.g. smart homes, wearable devices, autonomous cars), has brought about the
need to model "context properties" as part of the DA process. Hence, some approaches suggest renaming old DA
processes as "context-oriented domain analysis" or just simply "context analysis" where context properties aremodeled
alongsidewith other context features and reused during the application engineering phase. For instance, in [43] the
authors highlight the role of modeling context-aware systems and their behavioral variations using a Context-Oriented
Domain Analysis (CODA) approach to understand and model context requirements in order to support all possible
combinations of context adaptations. Recent approaches describe the role and reuse context features [44] for context-
aware applications and how the introduction of these context features (i.e. depicted in the same or in separate feature
models) in modern context-aware systems like the automotive domain [45] can increase the reusability of systems
features andmanage adaptive behavior at runtime.

3.2 | OpenData Reuse

The idea behind open data is to have data freely available to everyone to use. Therefore, under themain umbrella of
open-source software (OSS), open data or linked open data (LOD) as amore structuredway to publish and query data is
becoming an opportunity for government organizations to publicly share and reuse data. Although the idea of open
data is not new, it is appearing now as a new form of software reuse in different application domains and applications
(e.g. government, medical, scientific, transportation, etc.) and increasing collaborative facilities that add value to the

8 AUTHORONE ET AL.

data. Initiatives like the EUOpenData 2 Portal as amain entry point of access to public data including the European
standard DCAT application profile for data portals (DCAT-AP) 3 promote open data by default, accessible and usable,
and achieving semantic interoperability for public services. As reported by the European Data Portal, the potential
value of open data reuse will increase in the coming years asmore andmore open data providers become active. The
open data chain will add value for open data reusers and aggregators of knowledge. Without going into the technical
goals of data formats and applications for achieving semantic interoperability of data sets (i.e. using different data
formats like CSV, JSON, or XML), there is a new opportunity to reuse different kinds of artifacts that increase the value
of published data and create new research paths for organizations - for example, developing open data reusability
metrics (e.g. MELODA 4) to assess the degree of homogeneity in published datasets in six different dimensions.

3.3 | Services andmicro-services

Reusable web services have became very popular since the 1990s for building part of the functionality of the system
(i.e. often the non-critical parts) in the form of reusable components invoked using standard Internet mechanisms like
SOAP, REST, andWEB-RTC. The use of common data formats like XML (e.g. WSDL) or JSON to represent the data
exchanged by these web components, together with languages likeWS-BPEL to compose services, has facilitated and
modernized the reusability of many legacy applications like banking systems. Software companies like Amazon and
Google have popularized the use of these services so developers can invoke Amazon’s web (i.e. AWS 5) services and
Google APIs (e.g. Google Maps API Web Services 6) for creating reusable serverless applications. Therefore, older
approaches like JavaBeans (reusable classes encapsulatingmany objects into one single object) and its extensions for
building enterprise software (i.e. EJB - Enterprise Java Beans) using APIs formodular construction of more complex
systems have been replaced in many cases by web service technologies that promote loosely coupled applications,
higher reusability, and ease of use, and whose lightweight common data formats have facilitated the interoperability of
distributed applications.

Today, the trend toward using services continues. Recently, it has evolved towardmicroservices, whereby for certain
systems the size of the reusable web services has been reduced to just a few lines, leading to a new architectural style
calledmicroservice architectures (MSA). As a consequence, monolithic architectures and systems are now engineered (or
migrated) as anMSA or pattern 7, in favor of better deployability, testability, extensibility, scalability, and reusability
(among other relevant quality properties) and (re)-using small pieces of code. Well-known industry cases like Netflix or
eBay are examples of successful microservice architectures that decompose systems according to business capabilities.

Modern software platforms like Docker 8 enable the deployment of microservices for building large-scale applica-
tions and use, for instance, Docker containers (i.e. a standardized unit of software) to build a microservices architecture.
Compared to other traditional reusable components, the size of microservices doesn’t actually matter. Rather, what is
perceived to bemore important when adopting amicroservices architecture is modularity, ease of development and
test, scalability, and resilience of the solution to architecture erosion.

2http://data.europa.eu/euodp/en/home
3https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe
4MEtric for assessing openDAta sources: https://www.meloda.org/about-meloda/
5https://aws.amazon.com
6https://developers.google.com/maps/documentation/directions/web-service-best-practices
7https://microservices.io/patterns/microservices.html
8https://www.docker.com/solutions/microservices

AUTHORONE ET AL. 9

3.4 | Asset Reuse in Safety-critical Systems Engineering: in Search of a Pedigree

An asset [46] is defined as an item that has been designed for use inmultiple contexts. An asset, in the context of this
paper, refers to existing software. Designing software for multiple contexts is however not an easy task in the context
of safety-critical systems engineering. The failure that in 1996 caused the explosion of Ariane 5 [1] is an example of
a faulty design. As known, Ariane 5 contained a piece of code that was appropriate for its predecessor Ariane 4 but
that turned out to be catastrophic for Ariane 5. As observed by Gallina [47], as a consequence of the Ariane 5 accident,
asset reuse in safety-critical systems engineering has been considered a taboo. On the one hand, the “to-reinvent or
not-to-reinvent” dilemma has been often solved by a tacit acceptance that starting from scratch is safer. On the other
hand, standardization bodies haveworked hard in order to develop the necessary requirements for guiding: 1) the reuse
of pre-existing "pedigree-less" software; 2) the development of "pedigree-equipped" (safely reusable) software; 3) the
development of plug and play platforms.

At the cross-domain level, the meta-standard IEC 61508 [48] introduced the notion of Software of Unknown
Pedigree or Provenance (SOUP). Concerning the assessment of SOUP, IEC 61508, part 7, states: “In order to assess the
safety integrity of the new system incorporating the pre-existing software, a body of verification evidence is needed
to determine the behaviour of the preexisting element. This may be derived (1) from the element supplier’s own
documentation and records of the development process of the element, or (2) it may be created or supplemented by
additional qualification activities undertaken by the developer of the new safety related system, or by third parties. This
is the Safety Manual for compliant items that defines the capabilities and limitations of the potentially reusable software
element.” IEC 61508 incorporates results developed by Bishop et al. [49]

In themedical domain, IEC 62304 [50], the standard for life cycle processes formedical device software, refined
the notion of SOUP in the context of medical devices to denote pre-existing software that has not been developed to be
integrated intomedical devices, or software with unavailable or inadequate records of its development processes. IEC
62304 has also introduced guidance to treat SOUP.

In the aerospace domain, Integrated Modular Avionics (IMA) [51] consists of a flexible hardware and software
platformwith core functionality that can be easily extended and customised tomeet specific requirements. An IMA
platform is composed of modules, which are designed to be reusable in order to reduce development costs and occa-
sionally facilitate certification programs. Somemodules provide only mechanical functions (e.g., cooling); others include
core software and associated computing capabilities. IMA enables the use of legacy systems because components
are interoperable and “plug and play.” In addition to IMA, the Future Airborne Capability Environment (FACE) [52]
represents a standard for software computing environments and interfaces designed to support the development of
portable components across the general-purpose, safety, and security profiles. The standard enables developers to
create and deploy a wide catalog of applications for use across the entire spectrum of military aviation systems through
a common operating environment.

ISO 26262:2011 [53], the standard for functional safety within the automotive domain, mentions reuse explicitly
in some of its parts: Part 3 (concept phase), together with Part 8 (change management), indicates what should be
done in case of amodification of a pre-existing system in order to determine the impact on the system-relatedwork
product as well as in terms of process-related documentation (how to tailor the life cycle). Part 8 and Part 10 introduce
novel notions. Specifically, Part 8 introduces the notion of proven in use argument for reusing pre-existing elements, in
line with the previous standards, where guidance for the reuse of pre-existing software is provided. Part 10 (Clause
9) introduces the notion of the Safety Element Out of Context (SEooC), defined as a safety-related element that is not
developed in the context of a specific item (i.e., it is not developed in the context of a specific road vehicle). Part 10
also recommends corresponding processes for software and hardware element development and integration. These

10 AUTHORONE ET AL.

processes provide, on the one hand, guidance to suppliers on how to develop safely reusable elements, and on the other
hand, guidance to integrators on how to reuse components developed out of context. The notion of SEooC and the
corresponding development process have the potential to play a key role in pedigree-equipped engineering. SEooC
may be thought of as a re-interpretation of the 3Cmodel in the context of safety-critical systems engineering. In the
automotive domain, not only the reuse of individual components is of primary interest, but also the reuse of the software
architecture. AUTOSAR [54], which stands for AUTomotive Open System ARchitecture, is a standard that pursues
the objective of creating and establishing an open and standardized software architecture for automotive electronic
control units (ECUs), aimed at, among other objectives, achieving a higher penetration of COTS components across
product lines. AUTOSAR is also in search of a pedigree, and several efforts have beenmade to integrate ISO 26262, Part
6, requirements in order tomake AUTOSAR ISO 26262-compliant (see [55] for the extension of AUTOSARwith safety).
AUTOSAR represents the automotive counterpart of IMA in avionics.

Finally, it is relevant to mention the space domain, which in these decades has learnt its lessons and has aligned
itself with some of the previously-mentioned domains. In the space handbook of software reuse [56], existing software
embraces different software artifacts since reuse can take place at different phases of the software life-cycle. The
artifacts are: requirements, components, modules, libraries and source code, aswell as documents, plans, tests, and data.
To be able to reuse existing software, also in the space domain a "pedigree", called product service history, is considered to
be of value andmust be carefully analysed in conjunction with the configuration changes and the process examination,
whose objective is to establish the validity and value of the records of the existing software.

4 | APPLICATION DOMAINS

In this sectionwe describe some sample application domains exhibiting cases of successful reuse. Although the list is
not complete, it provides an overview of where different forms of reuse aremore promising.

4.1 | Reuse in the Automotive Domain

Reuse in the automotive domain has been largely explored and used, separating the hardware of the ECUs from the
software embedded in it [57]. Standard core assets and network drivers for the CAN (Controller Area Network) bus
have been developed as reusable assets independently of the hardware but able to exchange data with the ECUs via
a data bus and dedicated interfaces. However, software of modern cars is becoming more and more complex every
day and the traditional AUTOSAR reference architecture [54] must confront new challenges like building software
for autonomous vehicles, night vision systems, pedestrian detection systems, and so forth. Therefore the challenge
for software builders to connect autonomous and smart vehicles to other cars and road sensors demands not only 5G
communications but also open and flexible architectures to cope with new development challenges and continuous
software updates to support the vehicle infrastructure. Companies like Systemite AB (Sweden) facilitate configuration,
traceability, and version control of models by enabling reuse of specific configurations in as many contexts as needed
on behalf of tools like SystemWeaver 9. Therefore, typical reusable assets for this domain are software components,
models and SIL (software-in-the-loop) code used byMATLAB/Simulink tools for simulation and verification tasks and
building control algorithms (e.g. [58]). Atypical but of increasing relevance is also the reuse of arguments to speed up
compliance with ISO 26262, while arguing about safety in the context of safety-critical product lines (e.g., [59]).

9https://www.systemweaver.se

AUTHORONE ET AL. 11

4.2 | Reuse in the Space Domain

Despite the calamitous failure of the Ariane 5 rocket described earlier, reuse has long been vigorously pursued in space
programs, and its standards have been updated to handle reuse as discussed in Section 3.4. Space systems have a key
architectural characteristic that is essential to understanding the types of reuse that are pursued in those systems:
most space systems have a space segment – the system that is actually sent into space – and a ground system – the
system that controls the operations. The types of reuse pursued in each of these segments can be quite different. In
the space segment, embedded systems with limited memory and CPU power are featured, but with extremely high
requirements on reliability and longevity. Reuse is considered an important weapon in themaintenance of the onboard
(space) segment of a mission, where by a standardized onboard reference architecture is used to allow the creation
of softwaremodules that can easily be replacedwhile the system is in space. An early example is [60]. Amore recent
example is [61]. Ground systems, in contrast, contain enormous amounts of software that is, however, mostly less
mission-critical in its nature. Here, there is very high interest in the reuse of open source software on standard platforms
(e.g. Linux), as well as large components for data display and processing. Finally, since spacemissions are often similar
to one another, with variations such as destination and experimental purposes, many space Prime Contractors have
initiatives to create space program families that can bemanaged like product lines, thereby reducing the amount of
new work that must be invested in creating a new mission. Within the AMASS research project [62], variations in
space software systems as well as in processes, used to develop those systems, have been in focus and family-oriented
solutions have been proposed tomanage variants and impact analysis at process as well as system level [63, 64, 65].
The international CCSDS, a committee of global space agencies, has named reuse in all of its forms as one of its highest
priorities [66].

4.3 | Reuse in the Rail Domain

The European Railway Traffic Management System (ERTMS)[67] is an international standard which contributes to
the improvement of the interoperability, performance, reliability, and safety of modern railways. ERTMS relies on
the European Train Control System (ETCS), an Automatic Train Protection systemwhich continuously supervises the
train, ensuring that the safety speed and distance are not exceeded. ERTMS/ETCS can be specified in one out of four
main levels of operation, depending on the role of track-side equipment and on the way the information is transmitted
to/from trains. ERTMSwas conceived to enable interoperability among national networks, i.e., to enable trains crossing
national borders without requiring time-consuming and costly locomotive change. Given its different levels and its high
degree of variability within each of them, ERTMS/ETCS constitutes an ecosystem. In the context of theMultiannual
Programme of the Shift2Rail Joint Undertaking Initiative [68], which is the innovation programme in the rail sector
under which various projects are funded, reuse is also an important implicit objective. Within some of the funded
projects, for instance, product line engineering approaches are being applied [69] and modular platforms are being
conceived for future highly integrated and reconfigurable parameter-driven architectures, which require high levels of
software abstraction with support for incremental certification, and rely on new advanced networking approaches [70].

4.4 | Reuse in the HomeAppliances Domain

In the last decade, the home appliances domain has experienced a fundamental software-based transformation. More
andmore everyday home appliances are being run on software and augmentedwith online services. For instance, the
newest induction hobs feature full cooking surfaces, where dynamic heating areas are automatically calculated and

12 AUTHORONE ET AL.

activated or deactivated depending on the shape, size, and position of the cookware placed on top. There has been an
increase in the type of feedback provided to the user while cooking, such as the exact temperature of the cookware, the
temperature of the food being cooked, or even real-timemeasurements of the actual consumption of the Induction Hob.
All of these changes aremade possible at the cost of increasing the software complexity.

In the face of this ever-growing importance of software in the home appliances domain, industry is re-engineering
their product firmware into software product lines. An example of this is the induction division of BSH, the leading
manufacturer of home appliances in Europe. BSH produces induction hobs under the brands of Bosch, Siemens and
Gaggenau (among others) and software is the heart and soul of its induction hobs. Re-engineering firmware into
software product lines was possible through feature location. These feature location efforts [71, 39, 72, 40] range from
Information Retrieval toMachine Learning, and include the dimension of Search-based Software Engineering.

Still, this domain faces challenges in the re-engineering towards software product lines. Feature location is a
challenge in these industrial environments where a vast amount of firmware is accumulated over the years, and this
firmware has been created andmaintained by different software engineers. Even though no single software engineer
has a full understanding of the entire firmware, several software engineers can collaborate to complement each other’s
(partial) knowledge of the firmware [73].

5 | WHAT DO PRACTITIONERS THINK?

In order to acquire practical insight from reuse practitioners and researchers, we carried out an on-line survey, which
was sent to around 120 people involved in different forms of reuse activities. We took inspiration from a similar survey
conducted in 1993,which posed16questions [74]. We renewed some the questions according to present circumstances,
and prepared a survey with 14 questions. Despite the low number (16) of responses, they provide qualitative insight
into what practitioners are currently doing with respect to reuse activities. From the demographics, the 88.2% of the
responses belong to Europe, the 5.9% to USA and 5.9% fromAsia. The ages of the respondents vary from 34 to 64 (not
all the participants answered this question) and most of the organizations are large companies or research centers
(i.e. number of employees from 10.000 up to 400.000+), along with a few small companies. The number of years of
experience as professional software engineers varies from 5 to 34, so all can be considered senior, and the number of
years of experienceworkingwith software reuse ranges between 3 and 30. Figure 2 shows themost popular application
domains where reuse seems to bemore successful. The "other domains" label belongs to those responses where the
participants did not indicate a specific application domain but rather the type of reusable assets (e.g. knowledge) or a
process where reuse is used (e.g. product line engineering or safety critical systems). As we can observe from Figure
2, the automotive and the aerospace domains described in section 4 are very popular in the responses given by the
respondent.

According to the type of reusable assets (Q1), the participants expressed their preferences for source code and
components as themost popular ones; but also requirements, designs and test cases are frequently reused, as Figure 3
shows. In this figure, a single response fromone participant can include several assets, sowe counted them as a different
response. However, we decided to group in a different category subjects that answered "all assets", as we are unsure
whether they include all the other types.

While themajority of the subjects considered software reuse valuable, a bitmore than half of the subjects perceived
that the programming language doesn’t affect reuse (Q2). This is an interesting conclusion, as some programming
languages seem to bemore suitable than others for building reusable assets. The variety of programming languages
used to engineer reusable assets is broad: the data indicated no language that seems more popular than others.

AUTHORONE ET AL. 13

F IGURE 2 Most popular application domains of current reuse practice

F IGURE 3 Types of reusable assets most commonly used

14 AUTHORONE ET AL.

Languages like Haskell, C++, C, Simulink, Java and Python are commonly used but also others like C, Angular or Go lang.
In addition, almost all the respondents prefer to reuse rather than build from scratch (Q3) and the supporting

reasons are wide-ranging. Some of the responses include "Easier to pick something than create something", "If good design
(modular) reuse otherwise build from scratch", or "more productivity". Is it hard to categorize all the diversity of responses in
favor of reuse but the argumentation is along the lines of increasing speed and productivity and providing good designs
as a way to understand better the code. Regarding reuse using open source practice (Q4), 47% of the respondents
indicated they are not involved in reusing OSS components, so it is supposed that commercial solutions are preferred.
However, all the respondents think the use of repositories increases reuse (Q5), such as Gitlab, SVN, or proprietary
ones.

With respect to architectural concerns (Q6), themajority of the the respondents agreed that reuse influences the
adoption of new architectural styles and expressed preferences forWeb or Cloud based systems. However, 53% of the
respondents didn’t provide any concrete style.

The economic point of view of software reuse practice is quite important for launching a systematic reuse process.
Therefore, 82.4% of the participants think reuse is economically beneficial for their organizations (Q7) but few respon-
dents were able to estimate the upfront investment cost (e.g. ranging from 5% of the total effort to vast amounts) and
the potential benefits (e.g. "increasing speed", "at least double the cost", or "30% of the investment"). In addition, five of
the respondents believed that recognition awards increase reuse in their organizations (Q8).

The respondents indicated also the type of the reuse strategy adopted in their organizations (Q9), so institutional-
ized practices are themost preferred ones to systematize reuse but, surprisingly, 47% of the subjects still adopted an
ad-hoc reuse practice, such as shown in Figure 4.

F IGURE 4 Type of reuse practices adopted by organizations

The level of integration of reuse processes in other software engineering activities (Q10) is described in Figure 5.
As we can see, 47% of the subjects said there is a full integration of reuse in their development processes while a subset
of the answers reveals some kind of integration.

With regard to other non-technical concerns, 70% of the subjects think that legal or license problems do not inhibit

AUTHORONE ET AL. 15

F IGURE 5 Integration level of reuse processes in software engineering activities

reuse (Q11), while 59% believe that standards facilitate reuse practice (Q12). Themost popular application domains
where the participants think reuse is more promising (Q13) map with those shown in Figure 2, but some others like
embedded systems, critical systems, cyber physical systems, ormechatronics are highlighted as promising areas. Finally,
question (Q14) refers to the quality properties the subjects think aremore valuable when adopting a reuse strategy,
and the answers are shown in Figure 6. According to the figure, maintainability and reliability are the most popular
properties, but performance and functional suitability (i.e. according to ISO 2500, the degree to which a product or
system provides functions that imply needs when used under specified conditions) seem to be also very relevant.

F IGURE 6 Most popular quality properties when adopting a reuse strategy

With respect to [74], we provide in Table 1 a comparison of the responses between the old survey and ours for
nine questions that are nearly identical. As we can observe, there are interesting findings along these 26 years that we
can summarize. First, the types of reusable artifacts have changed significantly, due to the evolution of programming

16 AUTHORONE ET AL.

languages. Second, half of the developers or software engineers still think that the programming language affects reuse.
However, we observed a big shift from the first survey, where developers prefer to build their own software, compared
to today, where the 76% of the respondents are in favor of reuse. In addition, while the respondents in the 1993 survey
felt that rewards were rare for reuse, only 29% of today’s respondents think the same way. Regarding the issue of
having a common software process to promote reuse, the majority of the respondents disagreed. However, 41% of
the respondents think today that software reusemust be fully integrated with other software engineering processes
and 47% expressed that only some integrated in some activities. In both surveys, most of the subjects think that legal
problems inhibit reuse, and so this remains a major barrier for adoption. Surprisingly, another big shift concerns the use
of repositories: from Table 1 we can observe the significant change since 1993 in favor of using repositories to increase
reuse. Finally, as the variety of domains for reuse practice is great, it is difficult to predict new areas for successful reuse,
but we can see that the aerospace domain is still very important and the increasing importance of software reuse in the
automotive domain, mainly caused by the shift toward using ECUs to replacemechanical control.

6 | A RESEARCH ROAD MAP FOR THE FUTURE

Based upon the results of of our survey, the most promising application domains for reuse, and the different types
of reusable assets of modern software systems, we summarize in this section some trends that exhibit considerable
potential today and contribute toward the creation of a new roadmap for future reuse research. All of them represent,
in different ways, a stretching of the three dimensions (the 3Cs) to deal with new uncertainties arising in modern
applications.

Trend 1. Knowledge Reuse
The rapid advance of Big Data and Artificial Intelligence noted earlier has led to a trend toward the reuse of artifacts at
very high semantic levels of abstraction, whichmight be termed “knowledge components”. One concrete application is
in the area of business innovation processes. Duggan [75] has defined an innovation process based upon the concept
of so-called historical precedents. The process calls for a systematic search for historical precedents that represent
potential solutions to partial aspects of an innovation problem, followed by their creative combination to arrive at a full
solution. The possibility of creating a repository of historical precedents for search and retrieval has been investigated
[76], whereby as a first step, the utilization of semanticWiki technology [77] is postulated. The process poses several
major research challenges: the semantic fuzziness of the representation of the precedents; the fact that the insight
containedwithin a precedentmay change according to the specific innovation problem; the difficulty of formulating
search and retrieval queries. More powerful search and retrieval techniques such as latent semantic indexing are being
investigated in this respect. This is an example of dealing with uncertainty in the Concept dimension of reuse.

Trend 2. Reusable System Features
The rise of cyber-software engineering is also relevant to software reuse. More and more, machine learning and
computational search techniques have already been applied tomany problems throughout the software engineering
life cycle. This is reshaping the role that new approaches for reusable system feature identification are playing. These
approaches are becoming suggestion engines. They are called suggestion engines because they do not output a single
reusable system feature but a ranking of reusable system features. The software engineer is expected to inspect the
ranking and either choose one of the solutions or trigger a different search to produce a new ranking. This is the case
of feature location [40]. Modern feature location approaches output suggestions that are in turn refined by software

AUTHORONE ET AL. 17

Question Survey 1993 Response Question Survey 2019 Response

How widely reused are
common assets?

Unix tools, Document
templates, X widgets,
Adamath library

Which reusable assets
are actually used?

source code, compo-
nents, libraries, test
cases, designs, require-
ments

Does programming lan-
guage affect reuse? Divided Does the programming

language affect reuse? Yes (47%)

Do developers prefer to
build from scratch or to
reuse?

Build their own software
Do developers prefer to
build from scratch or to
reuse?

Reuse (76%)

Does perceived eco-
nomic feasibility influ-
ence reuse

High perception of
economic viability corre-
lated with source code
reuse

Is reuse perceived to be
economically beneficial
for your organization?

Yes (82%)

Do recognition rewards
increase reuse?

Rewards for reuse are
rare

Do recognition rewards
increase reuse in your or-
ganization?

Yes (29%)

Does a common soft-
ware process promote
reuse?

Disagree inmost cases

To what extent is soft-
ware reuse integrated
into other software en-
gineering processes in
your organization?

Fully integrated (41%),
Only some activities
(47%), Weakly inte-
grated (12%)

Do legal problems inhibit
reuse?

Not an impediment for
most respondents

Do legal or license prob-
lems inhibit reuse? No (71%)

Does having a reuse
repository improve code
reuse

Having reuse reposito-
ries does not improve lev-
els of code reuse

Do you think reposito-
ries increase reuse? Yes (88%)

Is reusemore common in
certain industries

Software (34%),
Aerospace (25%),
Manufacturing (14%)

In which application
types / domains do you
think reuse is more
promising?

Automotive (19%),
Aerospace (12%), Other
domains (15

TABLE 1 Comparison between two reuse surveys.

18 AUTHORONE ET AL.

engineers. As a result, software engineering effort is moving up the abstraction chain to focus on refining the output or
inputs of these suggestion engines. This is an example of improving our ability to handle uncertainty in the Context
dimension of reuse.

Trend 3. Reusable Services
The continuous re-engineering of conventional systems into service-based software with different granularity levels
(i.e. fromweb services tomicroservices) is still a popular development technique that builds and deploy non-critical
functionality as smaller code assets that can be reused using Internet protocols. Successful examples like Netflix using
amicroservice architecture and supported by specific platforms like Docker and Kubernetes are paving the way for
web developers to achieve better reuse ratios instead of other source code components and easier to deploy. However,
compared to other reusable assets, the perfect size of such reusablemicroservices is not well-defined, as we can find
examples of very small functionality engineering as amicro-service. Therefore, it is not so easy to create scalable and
reusable microservices when these are used by only one other service.

Trend 4. Reusablemachine learning components
Technologies such asmachine learning are not only helping to stretch the boundaries of retrieval techniques, but also
beginning to be encapsulated as the primary content of reusable components. An examplemay be found in the powerful
machine vision systems typical of automated vehicles. The problem is not somuch in the specification of the components
but in their testing. Given the training data and continual self-modification of components based on techniques like
deep neural networks, it can be extremely difficult to demonstrate that the component’s behavior fully conforms to its
specification. Themajor research challenge in this area is adequate testing of these new kinds of reusable components,
whichmay end up redefining themeaning of specification conformance. This is an example of dealing with uncertainty
in the Content dimension of reuse.

7 | CONCLUSION

The results of our practitioner survey havemade it abundantly clear that Rubén Prieto-Diaz was right in his prediction
that “software reuse will cease to exist”: in the 26 years since the original survey was performed, practitioners have
learned to integrate software reuse so completely into their development processes that it is no longer even amatter of
discussion. But were the predictions right that software reuse would cease to exist as an evolving, research-worthy
discipline? Both the vibrant industrial sector reuse communities and the research trends described in this paper indicate
that the answer is emphatically No. Our ambition continues to drive us to harness emerging technologies to pursue
reuse research in new contexts, with new artifacts, and for new, evenmore powerful search, retrieval, and development
processes. In conclusion we cite one final prediction, made over 30 years ago by Fred Brooks [78], that reuse would
remain the primarymeans of confronting the essential complexity of developing software. The implications of this are
clear: nomatter where our ambition takes us in the future, uncertain world, reuse will always be with us, and there will
always be new opportunities for software reuse.

ACKNOWLEDGEMENTS

R. Capilla’s work is supported byMCIU-AEI TIN2017-90644-REDT. B.Gallina is supported by EU and VINNOVA via the
ECSEL JU under grant agreement No 692474, AMASS project.

AUTHORONE ET AL. 19

REFERENCES

[1] Naur P, Randell B. Software Engineering: Report on a Conference. In: NATO Science Committee NATO; 1969. p. 231.
[2] Erdogmus H,Medvidovic N, Paulisch F. 50 Years of Software Engineering. SOFTWARE 2018;(35(5)).
[3] McIlroyMD. Mass Produced Software Components. In: NATO Science Committee NATO; 1969. .
[4] Bigerstaff TJ, Perlis AJ. Software Reusability. Vol I: Concepts andModels. New York: ACMPress; 1989.
[5] Latour L,Wheeler T, FrakesW. Descriptive and predictive aspects of the 3Csmodel: SETA1working group summary. In:

Workshop: Methods and Tools for Reuse Syracuse University CASE Center; 1990. .
[6] Weide B, Ogden WF, Zweben SH. Reusable Software Components, Advances in Computers. Transportation Research

Record: Journal of the Transportation Research Board 1991;(33):1–65.
[7] Jézéquel JM,Meyer B. Design by Contract: The Lessons of Ariane. COMPUTER 1997;(30(2)):129–130.
[8] Prieto-Díaz R. Domain Analysis for Reusability. In: COMPSAC’87 IEEE; 1987. p. 23–29.
[9] Prieto-Díaz R. The Dissapearance of Software Reuse. In: Third International Conference on Software Reuse: Advances

in Software Reusability ; 1994. .
[10] Krueger CW. Software Reuse. ACMComputing Surveys 1992;(24(2)):131–183.
[11] Prieto-Diaz R, Freeman P. Classifying Software for Reusability. IEEE Software 1987;(4(1)):6–16.
[12] Simos MA. Organization domain modeling (ODM): formalizing the core domain modeling life cycle. In: Proceedings of

the 1995 Symposium on Software reusability (SSR) ACM; 1995. p. 196–205.
[13] Capilla R. Application of Domain Analysis to Knowledge Reuse. In: 8thWorkshop on Institutionalizing Software Reuse

ACM; 1996. p. 1–6.
[14] Arango GF. Domain engineering for software reuse. PhD thesis, University of California, Irvine; 1988.
[15] Prieto-Diaz R, Arango GF. Domain Analysis and Software SystemsModeling. IEEE Press; 1991.
[16] Frakes W, Prieto-Diaz R, fox C. DARE: Domain analysis and reuse environment. Annals of Software Engineering

1998;(5(1)):125–141.
[17] Neighbors JM. The Draco approach for constructing reusable components. IEEE Transactions on Software Engineering

1984;(10):564–574.
[18] Batory D, O’Malley S. The Design and Implementation of Hierarchical Software Systems with Reusable Components.

ACMTransactions on Software Engineering andMethodology 1992;(1(4)):355–398.
[19] Czarnecki K, Eisenecher U. Generative Programming: Methods, Tools, and Applications. Reading, MA, USA: Addison-

Wesley; 2000.
[20] Bigerstaff TJ, Perlis AJ. Software Reusability. Vol II: Applications and Experience. New York: ACMPress; 1989.
[21] Anderson W. What COTS and Software Reuse Teach Us about SOA. In: 6th International IEEE Conference on

Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS’07) IEEE; 2007. p. 1–6.
[22] Barnes B, Durek T, Gaffney J, Pyster A. A framework and economic foundation for software reuse. In: Software Reuse:

EMering Technology IEEE; 1988. p. 77–78.

20 AUTHORONE ET AL.

[23] Gaffney JE, Durek TA. Software Reuse—Key to Enhanced Productivity; Some Quantitative Models. Information and
Software technology 1989;(31(5)):258–267.

[24] Favaro J. What Price Reusability? In: First Symposium on Environments and Tools for Ada ACM; 1990. p. 115–124.
[25] Poulin JS. Measuring Software Reuse: Principles, Practices, and EconomicModels. Reading, MA: Addison-Wesley Long-

man; 1996.
[26] LimWC. Managing Software Reuse. New Jersey: Prentice Hall; 1994.
[27] Favaro JM,FavaroKE, FavaroPF. Valuebased software reuse investment. Annals of SoftwareEngineering1998;(5(1)):5–

52.
[28] Biffl S, AurumA, BoehmB, Erdogmus H, Grünbacher P. Value-Based Software Engineering. Berlin, Heidelberg: springer

Verlag; 2006.
[29] Clements PC, Northrop L. Software Product Lines: Practices and Patterns. SEI Series in Software Engineering, Addison-

Wesley; 2002.
[30] Ternité T. Process Lines: A Product Line Approach Designed for ProcessModel Development. In: 2009 35th Euromicro

Conference on Software Engineering and Advanced Applications; 2009. p. 173–180.
[31] Gallina B, Sljivo I, Jaradat O. Towards a Safety-Oriented Process Line for Enabling Reuse in Safety Critical Systems De-

velopment and Certification. In: 2012 35th Annual IEEE Software EngineeringWorkshop; 2012. p. 148–157.
[32] Berger T, RublackR,NairD, Atlee JM,BeckerM,Czarnecki K, et al. A Survey ofVariabilityModeling in Industrial Practice.

In: Proceedings of the Seventh International Workshop on Variability Modelling of Software-intensive Systems VaMoS
’13, New York, NY, USA: ACM; 2013. p. 7:1–7:8.

[33] Pham NH, Nguyen HA, Nguyen TT, Al-Kofahi JM, Nguyen TN. Complete and Accurate Clone Detection in Graph-based
Models. In: Proceedings of the 31st International Conference on Software Engineering ICSE ’09,Washington, DC, USA:
IEEE Computer Society; 2009. p. 276–286.

[34] AssunçãoWKG, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, Egyed A. Reengineering legacy applications into software
product lines: a systematic mapping. Empirical Software Engineering 2017Dec;22(6):2972–3016.

[35] Martinez J, AssunçãoWKG, Ziadi T. ESPLA: A Catalog of Extractive SPL Adoption Case Studies. In: Proceedings of the
21st International Systems and Software Product LineConference - VolumeBSPLC ’17, NewYork, NY,USA: ACM; 2017.
p. 38–41.

[36] Round-trip Engineering and VariabilityManagement Platform and Process (REVaMP2, ITEA 3 Project). Identification of
relevant state of the art; 2017. http://www.revamp2-project.eu/images/documentation/REVAMP2_D3.1_v05.pdf.

[37] Beuche D, Schulze M, Duvigneau M. When 150% is Too Much: Supporting Product Centric Viewpoints in an Industrial
Product Line. In: Proceedings of the 20th International Systems and Software Product Line Conference SPLC ’16, New
York, NY, USA: ACM; 2016. p. 262–269.

[38] Martinez J, Ziadi T, BissyandéTF,Klein J, LeTraonY. Bottom-UpTechnologies forReuse: AutomatedExtractiveAdoption
of Software Product Lines. In: 2017 IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C); 2017. p. 67–70.

[39] Font J, Arcega L, Haugen O, Cetina C. Feature Location in Models Through a Genetic Algorithm Driven by Information
Retrieval Techniques. In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and SystemsMODELS ’16, New York, NY, USA: ACM; 2016. p. 272–282.

[40] Font J, Arcega L, Haugen Cetina C. Achieving Feature Location in Families of Models Through the Use of Search-Based
Software Engineering. IEEE Transactions on Evolutionary Computation 2018 June;22(3):363–377.

AUTHORONE ET AL. 21

[41] Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
CMU/SEI- 90-TR-21, Carnegie-Mellon University Software Engineering Institute; 1990.

[42] Bosch J. Design and use of software architectures: adopting and evolving a product-line approach. New York, NY, USA:
ACMPress/Addison-Wesley Publishing Co.; 2000.

[43] Desmet B, Vallejos J, Costanza P, Meuter WD, T D. Context-Oriented Domain Analysis. In: 10th International and
Interdisciplinary Conference, CONTEXT 2017 Sprnger; 2007. p. 178–191.

[44] Capilla R, Ortiz O, HincheyM. Context Variability for Context-Aware Systems. IEEE Computer 2014;(47(2)):85–87.
[45] Mens K, Capilla R, Hartmann H, Kropf T. Modeling and Managing Context-Aware Systems’ Variability. IEEE Software

2017;(34(6)):58–63.
[46] International Organization for Standardization and International Electrotechnical Commission and IEEE Societies and

the Standards Coordinating Committees of the IEEE Standards Association. ISO 24765: Systems and software engi-
neering - Vocabulary; 2017.

[47] Gallina B. Towards Enabling Reuse in the Context of Safety-Critical Product Lines. In: 5th IEEE/ACM International
Workshop on Product Line Approaches in Software Engineering, PLEASE 2015, Florence, Italy, May 19, 2015; 2015. p.
15–18.

[48] International Electrotechnical Comission. IEC 61508: Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-Related Systems.; 2010.

[49] Bishop PG, Bloomfield RE, Froome PKD. Justifying the use of software of uncertain pedigree (SOUP) in safety-related
applications. Report No: CRR336HSE Books ISBN 0 7176 2010 7; 2001.

[50] International Electrotechnical Comission. IEC 62304: Medical device software - Software life cycle processes.; 2006.
[51] Radio Technical Commission for Aeronautics (RTCA). DO-297 -Integrated Modular Avionics (IMA) Development Guid-

ance and Certification Considerations.; 2005.
[52] theOpenGroup. Future Airborne Capability Environment (FACE) Reference Architecture.; 2012.
[53] International Organization for Standardization. ISO 26262: Road vehicles — Functional safety; 2011.
[54] AUTOSARWebsite, AUTOSAR (AUTomotive Open SystemARchitecture);. http://www.autosar.org.
[55] AUTOSAR Website, Specification of Safety Extensions AUTOSAR CP Release 4.4.0);.

https://www.autosar.org/standards/classic-platform/classic-platform-440/.
[56] European Cooperation for Space Standardization. ECSS-Q-HB-80-01A: Space product assurance - Reuse of existing

software.; 2011.
[57] HardungB,KölzowT,KrügerA. Reuseof software indistributedembeddedautomotive systems. In: FourthACMInterna-

tional ConferenceOn Embedded Software (EMSOFT 2004) September 27-29, 2004, Pisa, Italy ACM; 2004. p. 203–210.
[58] Chrisofakis E, Junghanns A, Kehrer C, Rink A. Simulation-based development of automotive control software withMod-

elica. In: 8th InternationalModelicaConference,Dresden,Germany,March20-22LinköpingUniversity ElectronicPress;
2011. p. 1–7.

[59] Nešić D, NybergM, Gallina B. Constructing Product-line Safety Cases from Contract-based Specifications. In: Proceed-
ings of the 34th ACM/SIGAPP Symposium on Applied Computing SAC ’19, New York, NY, USA: ACM; 2019. p. 2022–
2031. http://doi.acm.org/10.1145/3297280.3297479.

22 AUTHORONE ET AL.

[60] Favaro J, Savoia G, D’Allessandro M. AdaBeans: An Architecture for Component-Based Development of Aerospace
Applications, using UML as a Visual Composition Language. In: DASIA- Data Systems in Aerospace, 25-28 May, 1998,
Athens, Greece Edited by B. KaldeichSchürmann. ESA SP-422. Paris, European Space Agency;. p. 41–44.

[61] Panunzio M, Vardanega T. A component-based process with separation of concerns for the development of embedded
real-time software systems. Journal of Systems and Software 2014;96:105 – 121.

[62] AMASS Consortium, AMASS (Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-
Physical Systems);. (Last accessed: May 19, 2021). http://www.amass-ecsel.eu.

[63] Javed MA, Gallina B. Safety-oriented Process Line Engineering via Seamless Integration between EPF Composer and
BVR Tool. Proceedings of the 22Nd International Systems and Software Product Line Conference (SPLC) - Volume 2,
Gothenburg, Sweden, New York, NY, USA: ACMDigital Library; 2018. p. 23–28.

[64] JavedMA, Gallina B, Carlsson A. Towards VariantManagement and Change Impact Analysis in Safety-oriented Process-
product Lines. In: Proceedings of the34thACM/SIGAPPSymposiumonAppliedComputing SAC ’19,NewYork,NY,USA:
ACM; 2019. p. 2372–2375. http://doi.acm.org/10.1145/3297280.3297634.

[65] Gallina B. Quantitative Evaluation of Tailoringwithin SPICE-compliant Security-informed Safety-oriented Process Lines.
Journal of Software: Evolution and Process 2019;.

[66] TheConsultativeCommittee for SpaceData Systems (CCSDS). ReportConcerning SpaceData SystemStandards. Space-
craft Onboard Interface Services. INFORMATIONAL REPORTCCSDS 850.0-G-2, GREENBOOK; 2013.

[67] EEIG ERTMS Users Group, ERTMS/ETCS RAMS Requirements Specification: Chapter 2 - RAM;.
http://docplayer.net/20959132-Ertms-etcs-rams-requirements-specification-chapter-2-ram.html.

[68] Shift2Rail Joint Undertaking, Multi-Annual Action Plan;. https://shift2rail.org/.
[69] ter Beek MH, Fantechi A, Gnesi S. Product line models of large cyber-physical systems: the case of ERTMS/ETCS. In:

Proceeedings of the 22nd International Systems and Software Product LineConference - Volume1, SPLC2018, Gothen-
burg, Sweden, September 10-14, 2018; 2018. p. 208–214.

[70] JakovljevicM,GevenA, Simanic-JohnN, SaatciDM. Next-GenTrainControl /Management (TCMS)Architectures: Drive-
By-Data System Integration Approach. In: Proceeedings of the 9th European Congress on Embedded Real Time Soft-
ware and Systems ERTS Toulouse, France, February 2018;. .

[71] Font J, Arcega L, Haugen O, Cetina C. Building Software Product Lines from Conceptualized Model Patterns. In: Pro-
ceedings of the 19th International Conference on Software Product Line SPLC ’15, New York, NY, USA: ACM; 2015. p.
46–55.

[72] Marcén AC, Pérez F, Cetina C. Ontological Evolutionary Encoding to Bridge Machine Learning and Conceptual Models:
Approach and Industrial Evaluation. In: Mayr HC, Guizzardi G, Ma H, Pastor O, editors. Conceptual Modeling Cham:
Springer International Publishing; 2017. p. 491–505.

[73] Pérez F, Font J, Arcega L, Cetina C. Collaborative feature location in models through automatic query expansion. Auto-
mated Software Engineering 2019;26(1).

[74] FrakesWB, Fox CJ. Sixteen questions about software reuse. Communications of the ACM1993;(38(6)):75–87.
[75] DugganW. Creative Strategy: A Guide for Innovation. New York: Columbia University Press; 2012.
[76] Favaro J. Knowledge Reuse in Innovation. In: International Conference on Knowledge Discovery, IC3K Springer; 2015.

p. 444–456.
[77] Favaro J, Mazzini S, Schreiner R, de Koning H, Olive X. Next Generation Requirements Engineering. In: Proceedings

INCOSE International SymposiumNo. 22(1),Wiley; 2012. p. 461–474.
[78] Brooks FP Jr. No Silver Bullet Essence and Accidents of Software Engineering. Computer 1987 Apr;20(4):10–19.

