
Measures to report the Location Problem
of Model Fragment Location∗

Manuel Ballarín
SVIT Research Group
Universidad San Jorge

Zaragoza, Spain
mballarin@usj.es

Ana C. Marcén
SVIT Research Group
Universidad San Jorge

Zaragoza, Spain
acmarcen@usj.es

Vicente Pelechano
pele@dsic.upv.es

Centro de Investigación en Métodos de Producción de
Software

Universitat Politècnica de València
Valencia, Spain

Carlos Cetina
SVIT Research Group
Universidad San Jorge

Zaragoza, Spain
ccetina@usj.es

ABSTRACT
Model Fragment Location (MFL) aims at identifying model ele-
ments that are relevant to a requirement, feature or bug. Many
MFL approaches have been introduced during the last years, ad-
dressing the identification of the model elements that correspond
to a specific functionality. However, there is a lack of detail when
the measurements about the search space (models) and the mea-
surements about the solution to be found (model fragment) are
reported. Generally, the only reported measure is the model size.
In this paper we propose to use five measurements (size, volume,
density, multiplicity and dispersion) in order to report the location
problems. These measurements are the result of analyzing 1.308
MFLs over a family of industrial models during the last four years.
Through two MFL approaches we emphasize the importance of
these measurements in order to compare results. Our work not
only proposes to improve the reporting of the location problem,
but we also provide real measurements of location problems, being
these measurements useful to other researchers during the design
of synthetic location problems.

KEYWORDS
Model Fragment Location, Feature Location, Traceability Link Re-
covery, Bug Location

ACM Reference Format:
Manuel Ballarín, Ana C. Marcén, Vicente Pelechano, and Carlos Cetina.
2018. Measures to report the Location Problem of Model Fragment Loca-
tion. In Proceedings of International Conference on Model Driven Engineering
Languages and Systems (MODELS’18). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗Produces the permission block, and copyright information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODELS’18, October 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
From the timeless traceability activity [21] to recent research efforts
on feature location [16], [6], [7] and Bug Location [2], Model Frag-
ment Location (MFL) has been gaining momentum. Overall, these
MFL approaches address the identification of the model elements
that are relevant to a requirement, feature or bug.

Current MFL approaches have leveraged Information Retrieval,
Linguistic, and Search-based techniques to achieve the location
of relevant model fragments. These approaches provide in detail
the algorithms and the parameters used to tune those algorithms.
Nonetheless, there is a lack of detail when the measurements about
the search space (models) and the measurements about the solution
(model fragment) are reported. Generally, the only reported mea-
sure is the model size. However, in most of the cases, the model sizes
values are not comparable among different works since different
models are measured in different manners.

In this paper we propose to use five measurements (size, volume,
density, multiplicity and dispersion) in order to report the location
problems during MFL. On the one hand, size and volume measure
the search space. On the other hand, density, multiplicity and dis-
persion measure the solution to be located. Our proposed measures
are the result of analyzing 1.308 MFLs performed during the last
four years, in the models of industrial dimensions of CAF 1.

Properly reporting the location problem is important, because
otherwise it is not possible to compare the performance of differ-
ent approaches against each other. It is not the same challenge to
locate a large model fragment in a small model than to locate a
small and scattered model fragment over several large models. We
illustrate this phenomenon comparing the performance of two MFL
approaches (in terms of precision and recall, which are performance
measures widely used by the research community).

Our work not only proposes to improve the reporting of the
location problem, but we also provide real measures of location
problems during MFL over industrial models. The aim of these
values is twofold: (1) that researchers who create synthetic location
problems have a reference from real world problems, and (2) to

1http://www.caf.net/en

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MODELS’18, October 2018, Copenhagen, Denmark M. Ballarín et al.

raise awareness among researchers of MFL approaches about the
profile of real world MFL problems.

The reminder of the paper is structured as follow. Section 2 pro-
vides an overview ofMFL. Section 3 clarifies the way to count model
elements, and introduces our measurements for the location prob-
lem. Section 4 presents the values in the CAF case study. Section
5 performs a statistical analysis to provide evidence of the signifi-
cance of the results. Section 6 discusses the outcomes of the paper.
Section 7 gathers the works related to this one. Finally, Section 8
concludes the paper.

2 OVERVIEW OF MODEL FRAGMENT
LOCATION

Traceability Links Recovery (TLR) is one of the most common ac-
tivities performed during the software system maintenance phase.
TLR is concerned with establishing the model fragment that im-
plements a particular natural language requirement. TLR among
requirements and models is one type of MFL. Next, we illustrate
MFL with TLR.

Figure 1 shows an excerpt, taken from a real-world train of a
Train Control and Management Language (TCML) model. TCML
is the domain specific language used by our industrial partner,
designed following UML conventions. TCML has the expressiveness
required to describe both the iteration between the main pieces of
equipment installed in a train unit and the non-functional aspects
related to regulation.

For TLR, the input query is a natural language requirement,
for which the model fragment must be retrieved. The example
depicted in Figure 1 shows a natural language requirement describ-
ing the high voltage functionality of one of the projects of our
industrial partner. This requirement is as follows: "The PLC will
command the raise of pantograph (AT_PANT_RAISE_ORDER) if
the AT_PANTO_RAISE push button is enabled in the active cabin
while the pantograph is down (AT_PANT_DOWN), being the HSCB
disabled (AT_HSCB_OFF)".

On TLR, as in other MFL activities such as feature location or
bug location, a search space (a model defining the set of all possi-
ble solutions) and a solution (model elements to be found) exist.
Focusing on the example shown in Figure 1, the search space corre-
sponds to the model (see the top part of the figure) and the solution
corresponds to the model fragment (see the bottom right part of
the figure).

The top part of Figure 1 shows a train unit furnished with multi-
ple pieces of equipment. The equipments showed are: Knife switch,
Cabin A, Pantograph, ACR and HSCB. Each equipment (e.g. PAN-
TOGRAPH) in a train unit has a collection of properties (for in-
stance, AT_PANT_UP) and a collection of orders (for instance,
AT_INHIB_PANT_ORDER). The communications among equip-
ments are addressed through the state machines. For instance, to
go from a pantograph in down state to a pantograph in up state,
the transition named CABIN_PANTO_RAISE is triggered.

The bottom right part of Figure 1 shows the model fragment to
be located. The model fragment comprises several model elements
including the HSCB and its property, the PANTOGRAPH with its
corresponding property and order and finally the CABIN A with its
order. Also, the model fragment comprises a part of a state machine

which represents the functionality associated with the raising of
the pantograph.

3 COUNTING MODEL ELEMENTS
In this paper we propose to use five measurements (size, volume,
density, multiplicity and dispersion) in order to report the location
problems. On these measurements the count of model elements are
important. Currently there are approaches in charge of carrying
out this task. [21].

C1 Counting the number of elements in a model: This ap-
proach is computed as the number of elements of the model.
However, this approach neglects both the complexity of the
elements and differences among diagrams.

C2 Weight factors per model element: This approach mea-
sures the size of a model taking into account the complexity
of the elements because the complexity and information that
is provided by the diagram elements are not the same for all
the elements. Based on the findings of [12], [19] proposes
to define complexity levels (e.g., simple, medium, and large)
where each complexity level is related to a weight (e.g., sim-
ple = 1, medium = 1.5, large = 2). From these weights, this
approach is computed as the number of elements weighed
by complexity. Unfortunately, this approach neglects the
inherent differences among diagrams.

C3 Weight factors per model element per diagram type:
This approach measures the size of a model taking into ac-
count not only the complexity of the elements but also the
differences among diagrams. To do this, in [19], the weight of
each diagram element is calculated asweiдht(e) = loд2(|E |),
where e is the element whose weight is being calculated and
E is the class of the element according to the diagram.

After applying these three approaches to a set of models, [19]
came to the conclusion that their results are extremely correlated. In
fact, none of these approaches yields significant better results than
the other ones. Therefore, although any of the presented approaches
can be used to count model elements, C1 is the easiest to implement
and compute, so it is strongly recommended to use C1.

Facing the different ways to count model elements, we propose
to report the size of models by means of C1. However, the size of a
model is not enough to measure the search space and the solution in
MFL. In the following section, we propose measurements to report
the location problem.

3.1 Measurements for Model fragment
Location

This section presents the measurements that we propose to report
the location problem of MFL. Therefore, some of these measure-
ments focus on measuring the search space, and the rest of them
focus on measuring the solution to be searched. The Figure 2 shows
the measurements of the search space (Size, and Volume) and the
measurements of the solution (Density, Multiplicity, and Disper-
sion).

In order to measure the search space, we propose the following
two measurements:

Measures to report the Location Problem
of Model Fragment Location MODELS’18, October 2018, Copenhagen, Denmark

High Voltage Railway Requirement High Voltage Railway Model Fragment

High Voltage Railway Model

Railway Domain Syntax

The PLC wi l l command the ra ise of pantograph
(AT_PANT_RAISE_ORDER) if the AT_PANTO_RAISE push
button is enabled in the active cabin while the pantograph is
down (AT_PANT_DOWN), being the HSCB disabled
(AT_HSCB_OFF)

Railway Equipment Equipment Behavior Equipment Properties

Equipment Orders

Figure 1: Example of a CAF model and model fragment

• The Size measures the number of elements that the model
contains from the metric C1. Since the larger the model the
larger the search space, this measurement determines how
complex the search space ends up being to find the solution.

The first row of Figure 2 represent conceptually this measure-
ment, where a solution is searched in two different models.
The first one is smaller than the second one, so the search
space for the first model is smaller than the search space for
the second model.

Given the example of Figure 1, the model is composed of
five equipments (knife switch, pantograph, HCSB, cabin, and

ACR). Moreover, the state diagrams of the model contains six
states and eight transactions. Therefore, the size of the model
is computed as the addition of all these elements, so the size
is 19 model elements. This measurement is used frequently
in most MFL works. However, although this measurement
is not a novelty for our work, we include it for the sake of
completeness.

• The Volume measures the amount of models which com-
pose the search space where a solution is searched. Since
the larger the number of models the larger the search space,
this measurement determines how large the search space
becomes according to the number of models.

MODELS’18, October 2018, Copenhagen, Denmark M. Ballarín et al.

Measurements
for Model Search

Conceptual Representation

- +

S
ea
rc
h
S
p
ac
e

S
ol
u
ti
on

Size: number of
model elements
in the model.

Volume: number
of models.

Density: ratio of
model fragment
elements to
model elements.

Multiplicity:
number of times
the solution
appears in the
search space.

Dispersion:
ratio of connected
elements in the
solution.

Legend

Model FragmentModel

Figure 2: Conceptual representations of the measurements

The second row of Figure 2 represents conceptually this
measurement, where a solution is searched in two different
search spaces. The first search space is composed of a model,
in contrast, the second search space is composed by several
models.

In the example of Figure 1, there is only onemodel. Therefore,
the search space is only composed of 1 model, so the volume
in this example is equal to 1 model.

In order to measure the solution, we propose the following three
measurements:

• The Density measures the percentage of model elements
which realize a solution. In other words, the model fragment
is composed by the model elements that realize the solution,
so the density is computed as the ratio of model fragment
elements to model elements. Since the larger the model frag-
ment the larger the density, this measurement determines

how large the solution ends up being in contrast to themodel.

The third row of Figure 2 represents conceptually this mea-
surement, where a model realizes two different solutions.
The first solution is realized by a model fragment which con-
tains a few model elements, in contrast, the second solution
is realized by a model fragment which contains the majority
of the model elements.

In the example of Figure 1, the size of the model is equal
to 19, and the size of the model fragment can be computed
as the number of elements that are pointed out so the size
of the model fragment is equals to five. Since the density
is equals to 26.31% model elements are part of the solution
model fragment.

• The Multiplicity measures the number of times the solu-
tion appears in the search space. Since the more solutions
are found, the greater the multiplicity, this measurement de-
termines how complex the search ends up being, according
to the number of solutions that the search space contains for
the same solution.

The fourth row of Figure 2 represents conceptually this mea-
surement, where a solution is searched in two models. The
search in the first model reveals a model fragment as the
solution. In contrast, the search in the second model reveals
three model fragments, so there are three solutions in the
model.

In the example of Figure 1, none of the model elements are
repeated, so it is no possible to find two model fragments
with the same elements. A bigger model may contain more
complex state machines, so it might be possible to find pat-
terns that are repeated. However, in the Figure 1, none of the
model elements are repeated, so the multiplicity is equal to 1.

• The Dispersion measures the ratio of connected elements
in the solution. Specifically, a model fragment is composed
of the model elements which realize a solution, but these
elements may be connected or not in the model, so the ele-
ments of the model fragment can be divided into different
groups in the model. The Dispersion is computed as the ratio
between the number of groups and the number of elements
and its value is from 0 to 1, where values around 0 indicate a
strong connection among the solution elements and values
around 1 indicate a strong dispersion among the solution
elements. Since the more the groups are found the larger the
dispersion, this measurement determines how complex the
search ends up being if model elements which compose a
model fragment are linked or not.

The fourth row of Figure 2 represents conceptually this mea-
surement, where a solution is realized by two models. In
the first model, all the elements that realize the solution
are linked, so the model fragment is a unity. However, in
the second model, the elements that realize the solution are

Measures to report the Location Problem
of Model Fragment Location MODELS’18, October 2018, Copenhagen, Denmark

Figure 3: Maximum, Minimum and Mean values of the Case
study Measurements

disconnected, so the model fragment is divided into groups
where each group is composed by one or more model ele-
ments.

In the example of Figure 1, none of the elements of the model
fragment are connected to the others, so there are so number
of groups as number of elements in the model fragment.
Since the model fragment is composed of the elements that
are pointed out, the model fragment contains five elements
and the number of groups is equals to five. Therefore, when
we compute the dispersion as the ratio between the number
of groups and the number of elements, we obtain a dispersion
value equals to 1, which means a strong dispersion among
the model fragment elements.

4 VALUES IN THE CAF CASE STUDY
This section presents the resulting values after applying MFL over
the industrial models of CAF as part of their migration process
between their model set to a Model-based Software Product Line.
We analyze the result of applying 1.308 MFLs. We provide that
results in Figure 3 and Table 1 as reference from real world MFL
problems.

Figure 3 depicts a box plot with the values including, for each of
the proposed measurements, the maximum, the minimum and the
mean of the values. Each column in the plot corresponds to one of
the proposed measurements (correspondingly named in the bottom
of the plot). The results obtained are as follows:

• The Size measurement of the search space is between 196.0
model elements and 356.0 model elements. In other words,
the largest search space used through the case study is
composed by 356 model elements. By contrast, the smallest
search space used is composed by a total of 196 model el-
ements. In addition, most MFLs were performed in search
spaces with size between 264 model elements and 309 model

elements, being the search space with a size of 287 model
elements the most frequent.

• The Volume measurement of the search spaces is between
5 models and 21 models. This means that the search spaces
where MFL approach were performed are among these val-
ues. Most MFLs was performed in search spaces with a vol-
ume between 9 models and 14 models, being 11 models the
most commonly volume among all search spaces.

• The Density measurement of the solutions is between 1%
and 6%, being the most common density interval between 2%
model elements and 3%model elements. In the case study, the
most repeated solution has a density of 3% model elements.

• The Multiplicity measurement of the solutions is between
1 time and 21 times, oscillating between 1 time and 8 times
the most repeated range for each of the solutions. This mean
that, given a solution, the total of the times that the solution
can be located is between 1 time and 8 times as maximum.
the most frequent multiplicity of our solutions has a value
of 5 times.

• The Dispersion measurement of the solutions is between
0.8 groups / elements and 1.0 groups / elements. The range
is between 0.83 groups / elements and 0.92 groups / ele-
ments, meaning that among these values are the total of
connected elements. In the case study, the most repeated
number of connected model elements for each solution is
0.88 groups / elements.

It is important to emphasize that the MFL is not performed on
all existing models of our industrial partner. Domain experts are
involved during the MFL approach, contributing with their domain
knowledge. A way to contribute with this domain knowledge is
by restricting the location approach to those models in which the
domain experts estimate that the solution will be found (in the case
of the initialization of the Software Product Lines, the features).

Table 1 shows the relationship between the value obtained of
a particular measurement and the number of MFLs that use this
value. In other words, Tab.1 overviews the top frequently MFLs
carried out over the industrial models. Each column in the table
identifies one of the proposed measurements in this work, while
the columns below these correspond to the most frequent value
obtained (named Value in Table 1) regarding to the amount of MFLs
(named MFLs in Table 1).

According to the values shown in the table, 272 model elements
are the most frequent Size of the search spaces of the case study,
with a total of 82 MFLs carried out. According to the Volume, the
most frequent value is 10, meaning that 10 is the amount of models
which compose the search space where a model fragment is located.

Regarding to the solution measurements (Density, Multiplicity
and Dispersion), 2.67 % is them most common percentage of model
elements which realize the solutions, obtained in a total of 34 MFLs.
Also, 1 time is the most commonly Multiplicity obtained during
608 MFLs, and 0.857 is the most frequent ratio of groups/elements,
obtaining that value during 425 MFLs.

4.1 Experimental Setup
The goal of this experiment is to evaluate if MFL is influenced
by the presented measurements. In order words, this experiment

MODELS’18, October 2018, Copenhagen, Denmark M. Ballarín et al.

Table 1: TOP 10 frequently results during Model Fragment Location over Industrial Models

Search Frequency
Size Volume Density Multiplicity Dispersion

Value MFLs Value MFLs Value MFLs Value MFLs Value MFLs
1 272 82 10 240 0.0267 34 1 608 0.857 425
2 321 82 9 189 0.0257 29 7 129 0.889 229
3 262 80 11 176 0.028 29 5 128 0.875 200
4 287 73 14 168 0.0249 28 6 111 0.833 162
5 279 48 8 104 0.0218 27 8 87 1.0 114
6 281 44 12 96 0.0297 25 9 74 0.9 60
7 322 43 16 64 0.03 25 10 51 0.8 53
8 292 43 13 52 0.0197 24 11 32 0.909 50
9 233 42 15 45 0.0265 21 13 27 0.923 10
10 332 41 7 42 0.0244 21 12 25 0.917 5

empowers us to determine if the results of MFL depend on the
values of measurements or MFL obtains the same results whatever
the values of the measurements are. To do this, the experiment
addressed the searches in the models of the CAF Case Study by
means of two approaches that obtain the best results to recover
Traceability between requirements and models [21]. The first one
[18] is a Linguistic Rule-Based (Linguistic) approach that is based on
Parts-of-Speech (POS) Tagging and Traceability rules. The second
one [4] is an Information Retrieval (IR) approach that is based on
Latent Semantic Indexing (LSI) and Singular Value Decomposition
(SVD). The results were analyzed depending on the measurement:

• The Size is already studied in other researches, in fact, this
measurement is used frequently in most MFL works. There-
fore, although this measurement is included in our research
for the sake of completeness, we did not evaluate the rele-
vance of this measurement in this work.

• The Volume measures the number of models, so to evalu-
ate the impact of this measurement, we took into account
searches where the search space is composed of one or more
models and only one of them contained the solution. More-
over, the search spaces had to have models with a similar size,
the solutions had to have similar density values and disper-
sion values, and the multiplicity values had to be equals to
one, which means the solution is just one in the search space.
Therefore, the values for the other measurements (Size, Den-
sity, Multiplicity, and Dispersion) are similar or equal for all
the searches.

• The Density measures the ratio of model fragment elements
to model elements, so to evaluate the impact of this mea-
surement, we took into account searches where the search
space was composed of the same model and the solutions has
different number of elements so that the density was not the
same for all the searches. Given that the search space was
the same for all the searches, the size and the volume values
were the same for all the searches. Moreover, the solutions
had to have similar multiplicity and dispersion values. There-
fore, the values for the other measurements (Size, Volume,

Multiplicity, and Dispersion) are similar or equal for all the
searches.

• The Multiplicity measures the number of times the solution
appears in the search space, so to evaluate the impact of this
measurement, we took into account searches where each
search space contains a different model and the searched
solution is the same. Moreover, the search spaces had to
have similar volume values and size values, and the solutions
had to have similar density values, and similar dispersion
values. Therefore, the values for the other measurements
(Size, Volume, Density, and Dispersion) are similar or equal
for all the searches.

• The Dispersion measures the ratio of connected elements
in the solution, so to evaluate the impact of this measure-
ment, we took into account searches where the search space
was composed by the same model and the elements of the
solutions were scattered in the model to a greater or lesser
extent so the dispersion values were not the same for all the
searches. Given that the search space was the same for all
the searches, the size and the volume values were the same
for all the searches. Moreover, the solutions had to have sim-
ilar density values and multiplicity values. Therefore, the
values for the other measurements (Size, Volume, Density,
and Multiplicity) are similar or equal for all the searches.

For each search, each approach generates a model fragment as a
possible solution. Then, we compare this possible solution against
the real solution, which we know beforehand according to the CAF
Case Study. Once the comparison is performed, a confusion matrix
is calculated. Therefore, we obtain two confusion matrices, one for
the Linguistic approach and one for the IR approach.

A confusion matrix is a table that is often used to describe the
performance of a classification model (in this case, the approaches)
on a set of test data (the resulting model fragments) for which the
true values are known (from the CAF Case Study). In our case, each
solution that generated by the approaches is a model fragment that
is composed of a subset of the model elements that are part of the
model (where the solution is being searched). Since the granularity

Measures to report the Location Problem
of Model Fragment Location MODELS’18, October 2018, Copenhagen, Denmark

will be at the level of model elements, the presence or absence
of each model element will be considered as a classification. The
confusion matrix distinguishes between the predicted values and
the real values by classifying them into four categories:
True Positive (TP): values that are predicted as true (in the solu-

tion) and are true in the real scenario (the oracle).

False Positive (FP): values that are predicted as true (in the solu-
tion) but are false in the real scenario (the oracle).

True Negative (TN): values that are predicted as false (in the so-
lution) and are false in the real scenario (the oracle).

False Negative (FN): values that are predicted as false (in the so-
lution) but are true in the real scenario (the oracle).

Then, some performance metrics are derived from the values
in the confusion matrix. Specifically, we will create a report that
includes four performance metrics (precision, recall, the F-measure,
and MCC) for each of the searches for each approach.

Precision measures the number of elements from the solution
that are correct according to the ground truth (the solutions in CAF
Case Study) and is defined as follows:

Precision =
TP

TP + FP

Recall measures the number of elements of the solution that are
retrieved by the proposed solution and is defined as follows:

Recall =
TP

TP + FN

The F-measure corresponds to the harmonic mean of precision
and recall and is defined as follows:

F −measure = 2 ∗ Precision ∗ Recall
Precision + Recall

=
2 ∗T P

2T P + F P + FN

However, none of these previous measures correctly handle
negative examples (TN). TheMatthews Correlation Coefficient
(MCC) is a correlation coefficient between the observed and pre-
dicted binary classifications that takes into account all the observed
values (TP, TN, FP, FN), and is defined as follows:

MCC =
TP ·TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Recall values can range between 0% (which means that no sin-
gle model element from the solution from the CAF Case Study is
present in the model fragment of the obtained solution) to 100%
(which means that all the model elements from the CAF Case Study
are present in the obtained solution). Precision values can range
between 0% (which means that no single model element from the
obtained solution is present in the solution from CAF Case Study)
to 100% (which means that all the model elements from the obtained
solution are present in the solution from CAF Case Study). A value
of 100% precision and 100% recall implies that both the obtained
solution and the solution from the oracle are the same. MCC values

can range between −1 (which means that there is no correlation
between the prediction and the solution) to 1 (which means that
the prediction is perfect). Moreover, a MCC value of 0 corresponds
to a random prediction.

4.2 Results
In Table 2, we outline the results aggregated for each of the ap-
proaches. Each row shows the Precision, Recall, F-measure, and
MCC obtained through each approach taking into account the se-
lected searches for each new measurement.

The IR approach achieves the best precision results for all the
measurements. However, the best results for the other performance
indicators depend on what measurement is evaluated. According
to the Density, The IR approach achieves the best results for all the
performance indicators, providing a mean precision value of 66.22%,
a recall value of 48.08%, a combined F-measure value of 52.09%, and
a MCC value of 0.53. In contrast, according to the Multiplicity and
the Volume, the Linguistic approach achieves the best results for
recall, F-measure, and MCC. Moreover, both approaches achieve the
best precision results for searches which evaluate the Multiplicity,
providing mean precision values up to 68%.

5 STATISTICAL ANALYSIS
To properly compare the different searches, the data resulting from
the empirical analysis was analyzed using statistical methods.

5.1 Statistical Significance
A statistical test must be run to assess whether there is enough
empirical evidence to claim that the new measurements have an
impact on the results so we have to consider their values to search in
models. To achieve this, two hypotheses for each newmeasurement
are defined: the null hypothesis H0, and the alternative hypothesis
H1. The null hypothesis H0 is typically defined to state that there is
no impact on the searches although the measurement have different
values, whereas the alternative hypothesis H1 states that there is
an impact on the searches depending on whether the measurement
values differ. In such case, a statistical test aims to verify whether
the null hypothesis H0 should be rejected.

The statistical tests provide a probability value, p −Value . The
p−Value obtains values between 0 and 1. The lower thep−Value of
a test, the more likely that the null hypothesis is false. It is accepted
by the research community that ap−Value under 0.05 is statistically
significant [3], and so the hypothesis H0 can be considered false.

The test carried out depends on the properties of the data. Since
our data does not follow a normal distribution in general, our analy-
sis requires the use of nonparametric techniques. There are several
tests for analyzing this kind of data; however, the Quade test is the
most powerful when working with real data [8].

Table 3 shows the Quade test statistic and p −Values for recall
and precision. The values that are pointed out indicate which are
statistically significant, so the hypothesis H0 can be considered
false. At least one of the values for recall or precision for one of
the approaches is statistically significant. Consequently, we can
state that the new measurements have an impact on the searches,
although the degree of this impact is an issue that remain as future
work.

MODELS’18, October 2018, Copenhagen, Denmark M. Ballarín et al.

Table 2: Mean Values and Standard Deviations for Precision, Recall and F-Measure for the approaches depending of the mea-
surement evaluated

Precision Recall F-Measure MCC

Volume
Linguistic 26.84 ± 18.78 50.75 ± 17.12 30.46 ± 17.72 0.32 ± 0.16

IR 34.52 ± 27.29 34.19 ± 20.26 27.28 ± 12.57 0.29 ± 0.13

Density
Linguistic 22.96 ± 22.92 43.90 ± 29.45 25.89 ± 22.25 0.25 ± 0.23

IR 66.22 ± 27.19 48.08 ± 18.85 52.09 ± 18.46 0.53 ± 0.18

Multiplicity
Linguistic 68.43 ± 21.06 55.56 ± 0.00 60.15 ± 7.96 0.60 ± 0.10

IR 77.08 ± 25.66 18.06 ± 8.27 27.41 ± 9.30 0.35 ± 0.08

Dispersion
Linguistic 23.50 ± 21.86 48.48 ± 25.96 27.25 ± 20.59 0.27 ± 0.21

IR 66.41 ± 28.25 43.47 ± 19.57 49.28 ± 19.61 0.51 ± 0.20

Table 3: Quade test statistic and p −Values

Precision Recall

Volume

Linguistic
p-Value 0.013 0.629

Statistic 18.00 0.27

IR
p-Value 0.013 0.031

Statistic 18.00 10.59

Density

Linguistic
p-Value 0.561 0.024

Statistic 0.62 0.024

IR
p-Value 0.020 0.047

Statistic 6.58 4.59

Multiplicity

Linguistic
p-Value 0.882 0.125

Statistic 0.02 NaN*

IR
p-Value 0.769 0.015

Statistic 0.10 25

Dispersion

Linguistic
p-Value 0.220 0.700

Statistic 1.63 0.15

IR
p-Value 0.003 0.451

Statistic 12.03 0.60

*The recall values are equals for all the searches in this case.

6 DISCUSSION
Results highlight that the proposed measurements have an impact
on the outcomes of the studied approaches. Through this work,
we have identified a series of facts that serve as a starting point

for discussing why the proposed measurements and the provided
values are significant for the research community. Through the
following paragraphs, said facts are discussed:

1 From the results, it is possible to conclude that size reports
do not provide enough information on the search problem.
This is due to the inability of the size measurement to accu-
rately represent the inherent challenge levels of models.

This issue is better illustrated through an example taken
from the case study. In the example, there are two models of
sizes 37 and 113 elements (respectively) and a feature that is
present in both models. At first glance, one may expect it to
be easier to find the feature in the smaller model. However, in
the first model, the feature is implemented through a model
fragment containing only two elements, and all the elements
in the model contain similar texts and word patterns. In the
second model, the feature is implemented through 28 ele-
ments, which are clearly differentiated from the rest of the
elements in the model in terms of text and word patterns. In
the depicted scenario, both approaches are able to find the
second model fragment with a much greater accuracy than
the first model fragment, rendering the size of the model
insufficient to depict the search problem.

2 Search problems in models are relatively new when com-
pared to search problems in other kinds of documents such
as the web or source code. Hence, search problems in models
have inherited measurements accepted by the community in
similar fields. However, the novelty of applying searches to
models is the models, and it is not possible to directly apply
measurements to models from webs and code. In that sense,
our work puts into perspective that such novel search prob-
lem requires more attention on how to report it in a correct
manner so performance results can be properly evaluated.

3 Among the research community, in the face of the absence
of real work datasets, synthetic datasets are very common

Measures to report the Location Problem
of Model Fragment Location MODELS’18, October 2018, Copenhagen, Denmark

and popular. These synthetic datasets are useful to test ex-
treme scenarios and situations. Since our findings show that
the proposed measurements are significant and impactful
with regard to the performance of search approaches, we
provide their real world values so designers can carry out a
real world search problem profiling process when designing
synthetic test cases and extreme search problem scenarios.
Therefore, the reference values for the measurements that
have been presented through this paper can be useful for
other researchers.

4 Through the results, it has become clear that the definedmea-
surements have an impact on the results of the approaches.
However, it may be possible to define new measurements or
derive other measurements from the presented ones. More-
over, it may be possible to try and identify patterns in the
results of the approaches based on the values of the measure-
ments. Finally, we have not studied how different approaches
are affected by each measurement, or in other words, some
approaches may be more sensitive to the values of certain
measurements while not being affected by other measure-
ments. All these possibilities for further exploration of the
measurements and their impact remain as future work.

To sum up, the results of our work are promising, and along
with the facts identified and exposed through the prior paragraphs,
open the door for the study of the particularities of reporting the
location problem of MFL.

7 RELATEDWORK
We focus our research on Model Fragment Location (MFL), so the
most important knowledge areas where our research can be applied
are: Bug Location, Feature Location, Traceability Links Recovery.
For this reason, through this section, we analyze some of the exist-
ing works in these areas, and compare our work with them.

Most of the existing works focus on searches in source code,
therefore their measurements are oriented to measure the number
of code lines or the number of methods in the code. For instance,
[22] present a systematic literature survey of bug location over
source code. In [5, 17] the authors present systematic literature
surveys of feature location techniques over source code. Javed et al.
[11] present a systematic literature review to discover the existing
traceability approaches and tools between software architecture
and source code. By contrast to them, our work focuses on models
instead of source code, so the measurements that are presented in
this work are oriented to measure models (search space) and model
fragments (solution space).

7.1 Related works on MFL over models
Some recent works center their efforts on MFL on models. Winkler
et al. [21] classify several approaches that have been created during
the past 15 years which try to optimize automatic identification
of traces over models. De Lucia et al. [4] present a Traceability
Links Recovery method and tool based on Latent Semantic Index-
ing (LSI) which includes models. Spanoudakis et al. [18] present

a linguistic rule-based approach to support the automatic gener-
ation of Traceability Links between requirements and models. In
[10, 15, 20, 23, 24] the authors focus on the location of features
over models by comparing the models with each other to formalize
the variability among them in the form of a Software Product Line.
For instance, in [10] the authors present an improved version of a
family mining approach for automatically discovering commonality
and variability between related system variants. They apply their
approach to function block diagrams used to develop automation
software and show its feasibility by a manufacturing case study.

Wille et al. [20] present an approach to analyze related models
and determine the variability among them. Their analysis provides
crucial information about the variability (changed parts, additional
parts, and parts without any modification) between the models in
order to create family models. In [23] an approach for synthesizing a
software product line using model comparison is presented. During
model difference detection, the presented approach applies EMF
Compare, a generic model comparison tool. For specifying the
variability, the approach applies the Common Variability Language
(CVL) [9], a generic language for expressing variability. Based on
the comparison results, a preliminary product line model (CVL
model) can be automatically induced and the SPL developer may
further enhance the product line model. Just like us, the authors
applied their research in the railway domain to illustrate their work.

Zhang et al. [24] present an approach for automating the aug-
mentation of product lines using model comparison and variability
modeling techniques. Their approach aims to reduce manual effort
involved in this process by automatically suggesting a tentative aug-
mented product line model. The approach applies CVL Compare,
a generic approach for automating the synthesis of a CVL-based
product line from a set of existing product models. Martinez et al.
[15] introduced a generic and extensible framework for bottom-up
approach to Software Product Line Engineering. They presented the
approach’ principles with the objective to reduce the current high
up-front investment required for a systematic reuse end-to-end
adoption.

All these works (see top of Table 4) are evaluated by means of
different case studies which are measured to a greater or lesser ex-
tent. The most popular measurement reported is the size. However,
none of them take into account the same measurements to work
with models and the measurements are selected by the researchers
according to their own judgment. In contrast, we propose a set of
measurements which are strongly related with models to measure
the search space and the solution space.

7.2 Our previous related works on MFL over
models

Finally, some of our previous works [7], [6], [1], [14], [13] present
Feature Location approaches to discover software artifacts that
implement the feature in models.

Marcen et al. [14] propose a feature location approach to dis-
cover model elements that implement the feature functionality in a
model. Through a model and a feature description, model fragments
extracted from the model and the feature description are encoded
based on a domain ontology. Then, a Learning to Rank algorithm is
used to train a classifier that is based on the model fragments and

MODELS’18, October 2018, Copenhagen, Denmark M. Ballarín et al.

Table 4: Overview of the related works regarding with their
searches and the five presented measurement: Size (S), Vol-
ume (V), Density(DE), Multiplicity (M), and Dispersion (DI)

Measurements

Search

Space
SolutionRelated

Works

Searches

in Models
S V DE M DI

[22] X - - - - -

[5] X - - - - -

[17] X - - - - -

[11] X - - - - -

[21]
√

X X X X X

[4]
√

X X X X X

[18]
√ √

X X X X

[20]
√ √

X X X X

[10]
√

X X X X X

[23]
√ √

X X X X

[24]
√

X X X X X

O
th
er

w
or
ks

[15]
√

X X X X X

[7]
√ √ √

X X X

[6]
√ √ √

X X X

[1]
√

X X X X X

[14]
√ √ √

X X XO
ur

pr
ev
io
us

w
or
ks

[13]
√ √ √

X X X

feature description encoded. Lapeña et al. [13] presented Computer
Assisted Clone-and-Own form Models (CACAO4M), an approach
to rank relevant model fragments for the development of particu-
lar requirements for a new product. Through their approach, the
authors aim to prioritize the model fragments that are easier to
understand from the perspective of a software engineer.

Arcega et al. [1] propose an approach that combines architecture
models at run-time and information retrieval for feature location.
Specifically, their approach uses a scenario that executes the desired
feature to be located. Also, the approach ranks all of the model
elements that are executed to extract the model elements that are
related to the feature. Font et al. [6] presented a Genetic Algorithm
to Feature Location. They provide a custom encoding that enable
the genetic algorithm to work with model fragments and a set
of genetic operations that can be applied to individuals following
that encoding. In addition, they present a fitness function, a parent
selection operator, a crossover operation and a mutation operation.

Font et al. [7] propose and compare five search algorithms to
locate features over a family of models: Evolutionary Algorithm

(EA-MFL), Random Search (RS-MFL) used as a sanity check, steepest
Hill Climbing (HC-MFL), Iterated Local Search with random restarts
(ILS-MFL), and a hybrid between Evolutionary and Hill Climbing
(EHC-MFL). They applied Latent Semantic Analysis (LSA) as the
fitness function. Their results show that Search-based Software
Engineering techniques can be applied to locate features in product
models. They evaluate their work over two families of industrial
models, demonstrating that Search-based Software Engineering
for feature location at the model level can be applied in real world
environments.

Most of these works are evaluated by means of case studies
which take into account the size of the models or the volume of
models (see bottom of Table 4). However, none of the case studies
take into account all the measurements which are presented in this
paper: size, volume, density, multiplicity, and dispersion.

8 CONCLUSIONS
Traceability Links Recovery, Feature Location and Bug Location are
popular activities in the context of software maintenance. When the
artifacts where the requirements, features, or bugs are located are
models, approaches focus on identifying relevant sets of model ele-
ments (Model Fragments). These Model Fragment Location (MFL)
approaches leverage Information Retrieval, Linguistic, and Search-
Based Software Engineering techniques to locate the model frag-
ments.

However, there is a lack of detail in the reporting of the mea-
surements of both the search space and the solution, with model
size being the only reported measure. Since different models are
measured in different ways, model size values are not a valid com-
parison.

Through this paper, we proposed the usage of five measurements
to report the results of MFL techniques. Apart from the size mea-
surement, we introduced four novel measurements: volume, density,
multiplicity, and dispersion. From the five measurements, size and
volume measure the search space, while density, multiplicity, and
dispersion measure the solution.

In order to determine the relevance of the proposed measure-
ments, we studied whether the values of the measurements have
an impact on the results provided by two distinct MFL approaches.
To that extent, we evaluated said approaches in terms of preci-
sion and recall, and analyzed their outcomes with regard to the
measurements of the case study.

The results presented in the paper show that all the proposed
measurements have a direct impact on the results of the MFL ap-
proaches, so we strongly recommend their study and reporting.
Furthermore, we also provide real measures of location problems
during MFL over industrial models. These values can be a reference
for researchers who create synthetic location problems.

ACKNOWLEDGMENTS
This work has been partially supported by the Ministry of Econ-
omy and Competitiveness (MINECO) through the Spanish National
R+D+i Plan and ERDF funds under the project Model-Driven Vari-
ability Extraction for Software Product Line Adoption (TIN2015-
64397-R).

Measures to report the Location Problem
of Model Fragment Location MODELS’18, October 2018, Copenhagen, Denmark

REFERENCES
[1] Lorena Arcega, Jaime Font, Øystein Haugen, and Carlos Cetina. 2016. Feature

Location through the Combination of Run-Time Architecture Models and Infor-
mation Retrieval. In International Conference on System Analysis and Modeling.
Springer, 180–195.

[2] Lorena Arcega, Jaime Font, Øystein Haugen, and Carlos Cetina. 2017. On the In-
fluence of Models at Run-Time Traces in Dynamic Feature Location. InModelling
Foundations and Applications, Anthony Anjorin and Huáscar Espinoza (Eds.).
Springer International Publishing, Cham, 90–105.

[3] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s Guide to Statistical Tests
for Assessing Randomized Algorithms in Software Engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[4] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. 2004.
Enhancing an Artefact Management System with Traceability Recovery Features.
In Proceedings of the 20th IEEE International Conference on Software Maintenance.
IEEE, 306–315.

[5] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature Location in Source Code: a Taxonomy and Survey. Journal of software:
Evolution and Process 25, 1 (2013), 53–95.

[6] Jaime Font, Lorena Arcega, Øystein Haugen, and Carlos Cetina. 2016. Feature
Location in Model-Based Software Product Lines Through a Genetic Algorithm.
In International Conference on Software Reuse. Springer, 39–54.

[7] J. Font, L. Arcega, ÃŸ. Haugen, and C. Cetina. 2017. Achieving Feature Location
in Families of Models through the use of Search-Based Software Engineering.
IEEE Transactions on Evolutionary Computation (2017), 1–1. https://doi.org/10.
1109/TEVC.2017.2751100

[8] Salvador García, Alberto Fernández, Julián Luengo, and Francisco Herrera. 2010.
Advanced Nonparametric Tests for Multiple Comparisons in the Design of Exper-
iments in Computational Intelligence and Data Mining: Experimental Analysis
of Power. Information Sciences 180, 10 (2010), 2044–2064.

[9] ÃŸystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. 2013. CVL:
Common Variability Language. 2 (08 2013).

[10] Sönke Holthusen, David Wille, Christoph Legat, Simon Beddig, Ina Schaefer, and
Birgit Vogel-Heuser. 2014. Family Model Mining for Function Block Diagrams in
Automation Software. In 18th International Software Product Lines Conference.

[11] Muhammad Atif Javed and Uwe Zdun. 2014. A systematic literature review
of traceability approaches between software architecture and source code. In
Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering. ACM, 16.

[12] Kurt Koffka. 2013. Principles of Gestalt Psychology. Vol. 44. Routledge.
[13] Raúl Lapeña, Jaime Font, Carlos Cetina, and Óscar Pastor. 2017. Model Frag-

ment Reuse Driven by Requirements. In Proceedings of the Forum and Doctoral
Consortium Papers Presented at the 29th International Conference on Advanced
Information Systems Engineering, CAiSE. 12–16.

[14] Ana C. Marcén, Jaime Font, Óscar Pastor, and Carlos Cetina. 2017. Towards
Feature Location in Models Through a Learning to Rank Approach. In Proceedings
of the 21st International Systems and Software Product Line Conference - Volume B
(SPLC ’17). ACM, New York, NY, USA, 57–64. https://doi.org/10.1145/3109729.
3109734

[15] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le
Traon. 2015. Bottom-up Adoption of Software Product Lines: a Generic and Ex-
tensible Approach. In Proceedings of the 19th International Conference on Software
Product Lines.

[16] J. Martinez, T. Ziadi, T. F. BissyandÃľ, J. Klein, and Y. l. Traon. 2015. Automating
the Extraction ofModel-Based Software Product Lines fromModel Variants (T). In
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 396–406. https://doi.org/10.1109/ASE.2015.44

[17] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering. Springer, 29–58.

[18] George Spanoudakis, Andrea Zisman, Elena Pérez-Minana, and Paul Krause.
2004. Rule-Based Generation of Requirements Traceability Relations. Journal of
Systems and Software 72, 2 (2004), 105–127.

[19] Harald Störrle. 2014. On the Impact of Layout Quality to Understanding UML
Diagrams: Size Matters. MODELS (2014).

[20] David Wille, Sönke Holthusen, Sandro Schulze, and Ina Schaefer. 2013. Interface
Variability in Family Model Mining. In 17th International Software Product Line
Conference.

[21] Stefan Winkler and Jens Pilgrim. 2010. A Survey of Traceability in Requirements
Engineering and Model-Driven Development. Software and Systems Modeling
(SoSyM) 9, 4 (2010), 529–565.

[22] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[23] Xiaorui Zhang, Øystein Haugen, and Birger Møller-Pedersen. 2011. Model Com-
parison to Synthesize a Model-Driven Software Product Line. In Proceedings of
the 15th International Conference on Software Product Lines.

[24] Xiaorui Zhang, Øystein Haugen, and Birger Møller-Pedersen. 2012. Augmenting
Product Lines. In 19th Asia-Pacific Software Engineering Conference.

https://doi.org/10.1109/TEVC.2017.2751100
https://doi.org/10.1109/TEVC.2017.2751100
https://doi.org/10.1145/3109729.3109734
https://doi.org/10.1145/3109729.3109734
https://doi.org/10.1109/ASE.2015.44

	Abstract
	1 Introduction
	2 Overview of Model Fragment Location
	3 Counting Model Elements
	3.1 Measurements for Model fragment Location

	4 Values in the CAF Case Study
	4.1 Experimental Setup
	4.2 Results

	5 Statistical Analysis
	5.1 Statistical Significance

	6 Discussion
	7 Related Work
	7.1 Related works on MFL over models
	7.2 Our previous related works on MFL over models

	8 Conclusions
	Acknowledgments
	References

