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Abstract

Context: Leveraging machine learning techniques to address feature loca-
tion on models has been gaining attention. Machine learning techniques em-
power software product companies to take advantage of the knowledge and the
experience to improve the performance of the feature location process. Most of
the machine learning-based works for feature location on models report the ma-
chine learning techniques and the tuning parameters in detail. However, these
works focus on the size and the distribution of the data sets, neglecting the
properties of their contents.

Objective: In this paper, we analyze the influence of three model fragment
properties (density, multiplicity, and dispersion) on a machine learning-based
approach for feature location.

Method: The analysis of these properties is based on an industrial case
provided by CAF, a worldwide provider of railway solutions. The test cases
were evaluated through a machine learning technique that uses different subsets
of a knowledge base to learn how to locate unknown features.

Results: Results show that the density and dispersion properties have a
direct impact on the results. In our case study, the model fragments with extra-
small density values achieve results with up to 43% more precision, 41% more
recall, 42% more F-measure, and 0.53 more Matthews Correlation Coefficient
(MCC) than the model fragments with other density values. On the other hand,
the model fragments with extra-small and small dispersion values achieve results
with up to 53% more precision, 52% more recall, 52% more F-measure, and 0.57
more MCC than the model fragments with other dispersion values.

Conclusions: The analysis of the results shows that both density and dis-
persion properties significantly influence the results. These results can serve
not only to improve the reports by means of the model fragment properties, but
also to be able to compare machine learning-based feature location approaches
fairly improving the feature location results.
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1. Introduction

Feature location is the task of finding the features that implement a specific,
user-observable functionality in a software system [1]. It plays a key role in the
initiation of Software Product Lines when products already exist. In the case of
feature location in models, the goal is to identify the model fragment that best
realizes a specific feature. Therefore, a model fragment contains the elements of
the product model that make the software functionality described in a feature
possible.

The emerging interest in leveraging machine learning to address the challenge
of feature location has been growing rapidly [2, 3, 4, 5, 6, 7]. In these works,
machine learning techniques take advantage of the knowledge and the experience
that have been generated in software companies for years in order to perform
the feature location process. In feature location on models, the model fragments
that have been manually retrieved by the engineers and modellers for years are
collected in knowledge bases. Then, all or some of the retrieved model fragments
can be exploited by machine learning techniques in order to learn how to locate
unknown features.

Figure 1 shows an example of a retrieved model fragment, which can be
found in a knowledge base for feature location on models. The retrieved model
fragment is stored in the knowledge base with a feature description and a score,
which is called a triplet of the knowledge base. The feature describes (using
natural language) the functionality searched for. The model fragment contains
the model elements retrieved for the feature description. In the example, the
model fragment, which is highlighted in gray, consists of a set of three model
elements (Pantograph 2, Circuit Breaker 2, and the relation between them).
These three elements belong to the product model, which has more elements
that are not included in the retrieved model fragment, such as Pantograph 1 or
Converter 1. The score determines the similarity between the feature description
and the model fragment. In this example, a score equal to 4/4 means that the
retrieved model fragment contains all of the model elements associated to the
described feature. In contrast, a score equal to 0/4 means that none of the
elements of the retrieved model fragments are related to the described feature.

The whole or part of a knowledge base is usually exploited in machine learn-
ing in order to learn how to classify. Specifically, the sets of data, which are se-
lected from knowledge bases for learning, are usually called training datasets. In
feature location on models, where the knowledge bases are composed of triplets,
a training dataset contains the triplets of the knowledge base, which are used
to learn how to locate unknown features. To report machine learning-based
works for feature location on models, researchers describe the machine learning
techniques, the tuning parameters, and the training datasets. The description
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Figure 1: Example of a triplet of the knowledge base for feature location on models.

of training datasets is based on their number of triplets (size) and the distribu-
tion of the triplets according to their scores (score distribution). However, the
specific properties of the model fragments are neglected even though the model
fragments form part of the triplets in the training datasets as the scores do.

In this paper, we analyze the influence of three model fragment properties
[8]: density, multiplicity, and dispersion. Specifically, the influence of these
properties is obtained taking into account the results of a machine learning-
based approach for feature location (FLiM-ML). Among the machine learning
techniques supported by this approach, Rankboost is notable for its good results
in other fragment location problems [9]. For this reason, Rankboost was the
machine learning technique selected for the approach to evaluate an industrial
case study. The industrial case study was provided by CAF1, a worldwide
provider of railway solutions, and contains 268 test cases and 7,500 triplets in the
knowledge base. The test cases were evaluated through the FLiM-ML approach
using different training datasets. Specifically, the subsets of the knowledge base,
which were used as training datasets, were selected taking into account the
different density, multiplicity, or dispersion values of the model fragments in
knowledge base.

Our results show that the multiplicity property does not have an impact
on the feature location results. However, the density and dispersion properties
have a direct impact on the feature location results. With regard to density, the
model fragments with extra-small density values (between 0% and 25%) achieve
results with up to 43% more precision, 41% more recall, 42% more F-measure,
and 0.53 more MCC than the model fragments with other density values. In
fact, the improvement of the results in our evaluation is progressive. The lower
the density values, the better the results are.

With regard to dispersion, the model fragments with extra-small (between
0 and 0.25) and small (between 0.25 and 0.50) dispersion values achieve results
with up to 53% more precision, 52% more recall, 52% more F-measure, and 0.57
more MCC than the model fragments with other dispersion values. Although the
relation between the results is not as clear as in the case of the density property,
there may be a relation between the connected elements in a model fragment and
the facility to locate the model fragment. In our case study, it seems that the

1www.caf.net/en
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stronger the connection between the elements of a model fragment, the easier it
is to find that model fragment. However, future research about dispersion can
help to clarify this relation.

The statistical analysis of the results shows that both density and disper-
sion properties significantly influence the results. Taking into account these
results, reporting the model fragment properties may be relevant to enable the
replication of research works, that locate features applying a machine learning
technique. In fact, to replicate the best results of this work, we should report
density and dispersion properties. Moreover, these results also provide evidence
that model fragment properties may be relevant to be able to compare machine
learning-based approaches fairly and improve their feature location results.

On the one hand, if we wanted to compare two machine learning-based
approaches for feature location in models fairly, we should take into account
that both approaches may need model fragments with different property values.
For example, a deep learning technique usually needs a training dataset with
a greater number of triplets than a learning to rank algorithm, although both
are machine learning techniques. Likewise, an approach based on deep learning
may need model fragments with different density values than an approach based
on a learning to rank algorithm. Therefore, in order to obtain the best perfor-
mance of the compared approaches, we must select the best training dataset
for each approach. For example, in our work, the best results were obtained
using a training dataset, where the triplets contain model fragments with den-
sity values between 0% and 25%. These results were achieved by a learning to
rank algorithm (i.e., Rankboost), but other machine learning techniques could
require a different training dataset to obtain the best results.

On the other hand, the evaluation results show that by taking into account
specific values for one property, we can improve the feature location results. For
example, taking into account only extra-small density values, we can surpass the
results obtained using other density values. Likewise, taking into account extra-
small and small dispersion values, we can surpass the results obtained using
other dispersion values. Therefore, we can improve the feature location results
of our case study using a training dataset that contains model fragments with
extra-small density or extra-small and small dispersion. In summary, in machine
learning-based feature location on models, the results of this work can serve not
only to improve the reports by means of the model fragment properties, but
also can serve to compare machine learning-based feature location approaches
fairly and, naturally, to improve the feature location results.

The remainder of this paper is structured as follows: Section 2 provides
background on our case study. Section 3 highlights the properties of training
datasets, including the model fragment properties. Section 4 details the means
used to evaluate our work, the results of the evaluation, and the statistical sig-
nificance of the obtained results. Section 5 discusses the performed experiment
and the obtained results. Section 6 describes the threats to the validity of our
work. Section 7 introduces the existing works that are related to our work.
Finally, Section 8 concludes the paper.
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2. Background

This section presents the Train Control and Management Language (TCML),
which is used to formalize the products manufactured by our industrial partner
CAF. Their trains can be found all over the world and in different forms (regular
trains, subway, light rail, monorail, etc.). We held monthly meetings with their
domain experts, who are software engineers with at least 10 years of experience
in software development for train control. In this work, the TCML will be used
throughout the rest of the paper to present a running example and to describe
the case study for the evaluation. Moreover, in this section, we also present an
illustration of an equipment-focused simplified subset of the Domain Specific
Language (DSL). We also present the Common Variability Language (CVL)
[10], which is the language used to formalize the model fragments. Finally, we
present the feature location problem for our industrial partner CAF.

The Train Control and Management Language (TCML) has the expressive-
ness required to describe both the interaction between the main pieces of equip-
ment installed in a train unit and the non-functional aspects related to reg-
ulation. A train unit is furnished with multiple pieces of equipment. Some
examples are the traction equipment, the compressors that feed the brakes, the
pantograph that harvests power from the overhead wires, and the circuit breaker
that isolates or connects the electrical circuits of the train. The control software
of the train unit is in charge of making all of the equipment cooperate in order to
achieve the train functionality, while guaranteeing compliance with the specific
regulations of each country.

For the sake of understandability and legibility, and due to intellectual prop-
erty rights concerns, we present an equipment-focused simplified subset of the
DSL. The top left of Figure 2 depicts one example, taken from a real-world train.
It presents a converter assistance scenario where two separate pantographs (High
Voltage Equipment) collect energy from the overhead wires and send it to their
respective circuit breakers (Contactors), which in turn send it to their indepen-
dent Voltage Converters. The converters then power their assigned Consumer
Equipment: the HVAC on the left (the train’s air conditioning system), and the
PA (public address system) and CCTV (television system) on the right.

To formalize the model fragments used in the rest of our work, we use the
Common Variability Language (CVL) [10], which expresses variability among
models in terms of Model Fragments such as Placement Fragments (variation
points) and Replacement Fragments (variants). The materialization of prod-
uct models is performed by means of Fragment Substitutions between a Base
Model (Placements) and a Model Library (Replacements). In the top right of
Figure 2, the element highlighted in gray conform an example of model frag-
ment, including one circuit breaker that connects Converter 2 to Consumer
Equipment assigned to Converter 1. This model fragment is the realization of
the ”converter assistance” feature, which allows the passing of current from one
converter to equipment assigned to its peer for coverage in case of overload or
failure of the first converter. A simple example of model fragment manipula-
tion in Train Control and Management Language (TCML) can be found at:
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Figure 2: Example of the TCML model, model fragment, and triplet of the knowledge base.

youtube.com/watch?v=Ypcl2evEQB8

2.1. Feature Location

For feature location, the engineers in the CAF company manually search for
the model fragment that best realizes a feature in a product model. To do this,
the company provides feature descriptions, and the engineers have to locate the
model elements (fragment) that are described in each feature.

Although the example of Figure 2 makes the manual retrieval process seem
easy, it is important to remember that the figure just shows an example and the
real conditions differ from that. Basically, product models are larger and more
complex than the product model in the figure. Moreover, the models are created
and maintained over long periods of time by different software engineers, and
the engineers in charge of feature location often lack knowledge of the entirety
of the product details. Under these conditions, feature location consumes great
amounts of time and effort, without guaranteeing good results.

In addition to the engineers’ experience, the dimensions of the data and the
collaboration of several engineers are also relevant factors for time and effort
costs. Suppose we ask a group of 19 domain experts to manually retrieve the
model fragments that correspond to the 121 feature provided by our industrial
partner. Taking into account that the data comprises a family of product models
with 23 models of 1200 model elements, at least 27,600 model elements should
be evaluated. Moreover, since each model element has about 15 properties,
about 414,000 properties should be considered. Assuming that a domain expert
only needs one second to consider a property of a model element, the domain
expert would need 4.79 days to manually locate each query. For 121 features
and 19 domain experts, it would take 30.17 years to obtain the results [11].

These numbers demonstrate that an approach that automatically retrieves
model fragments is greatly needed [12]. Moreover, the quality of the retrieved
model fragment depends on the experience of the engineer, the complexity of
the description, the complexity of the product model, and the time needed.
Therefore, the model fragments are stored with the feature description and a
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score value. Sometimes, the manual searches can be unsuccessful or incomplete.
However, a domain expert assigns scores to indicate how good the model frag-
ments are. Then, the model fragment with the score and the correspondent
feature description are stored.

3. Properties of the training datasets

In machine learning, training datasets contain the information used to learn
how to classify. The success of a machine learning technique depends largely on
the information available. If the information in a training dataset is not enough,
the technique cannot properly learn how to perform the classification. Therefore,
the completeness and heterogeneity of a training dataset can either facilitate or
limit learning. For this reason, both the size and the score distribution of
training datasets have been widely discussed in the literature:

• Size is related to the amount of information in a training dataset and can
greatly impact classification accuracy. As a consequence, the analysis of
the size has been a major point of interest in research, generally finding a
positive relationship between the size of the dataset and the classification
accuracy for a wide range of classifiers [13, 14, 15]. In feature location on
models, the size is the number of triplets in the training dataset.

• Score distribution is related to amount of information for each different
value. It is commonly called class distribution, but this name could be
confused in the context of this work. In the model domain, the term
”class” is related to class diagrams. In contrast, in machine learning, class
refers to the different values that can be predicted for a machine learning
technique. To avoid misunderstandings, in this article, the concept of class
is replaced by score. In feature location on models, the score distribution
is the percentage of triplets in the training dataset for each score range.

The score distribution is balanced when there is a similar number of
triplets in the training dataset for each score range. It is conventional
wisdom that classifiers tend to perform worse when the training dataset is
imbalanced. A classifier trained from an imbalanced training set generally
predicts with greater frequency the scores that are most often repeated
in the dataset. This classification behaviour is unacceptable when the
minority scores in the dataset are the scores of primary interest. For ex-
ample, in our case, the primary interest is to find model fragments with
high scores (between 3 and 4). Predicting that a model fragment has a
score equal to 1 when its real score is 2 may not be important. However,
predicting that a model fragment has a score equal to 1 when its real score
is equal to 4 could be unacceptable. The cost of making the second error
(misclassification cost) would be higher than the cost of making the first
error. For this reason, most works, such as this work, use balanced train-
ing datasets. However, some research works [16, 17, 18] have been tackling
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Figure 3: Example of a model fragment with its values for the properties: density, multiplicity,
and dispersion.

the problems about learning from datasets with imbalanced distributions
where the costs of misclassifying examples is non-uniform.

We consider that these properties (i.e., size and score distribution) must be
used to report our training datasets. Nevertheless, we also think that the nature
of the problem may require other more specific properties in order to provide all
the necessary information for the replication of the experiments. For example,
the properties identified in [8] to report the search space and the solutions in
feature location problems are specifically based on models. In fact, among the
identified properties, three of them (density, multiplicity, and dispersion) focus
on properly reporting model fragments.

• Density measures the percentage of model elements that are present in
a model fragment. Density is computed as the ratio of model fragment
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elements to model elements. Figure 3 shows an example of how to calculate
the density of a model fragment. In this example, the model fragment
contains four elements (the Pantograph 1, the relation between Pantograph
1 and Circuit Breaker 1, the Circuit Breaker 1, and the HVAC ), and the
model has 19 elements in total. Therefore, the density value is equal to
21.05%, which means that the model fragment is composed of 21.05% of
the model elements.

• Multiplicity measures the number of times that the model fragment
appears in the model. Figure 3 shows an example of how to calculate the
multiplicity of a model fragment. In this example, the model fragment
contains four elements: a pantograph that is connected to a circuit breaker,
the relation to connect the pantograph and the circuit breaker, the circuit
breaker connected to the pantograph, and a HVAC. Taking into account
these elements, the multiplicity value is equal to 2, which means that there
are two possible model fragments that contain these elements with their
connections.

• Dispersion measures the ratio of connected elements in the model frag-
ment. Specifically, a model fragment is composed of model elements, but
these elements may or may not be connected in the model. The dispersion
values are between 0 and 1, where 0 means that none of the model elements
in the model fragment are connected with each other and 1 means that all
the model elements in the model fragment are connected with each other.
Figure 3 shows an example of how to calculate the dispersion of a model
fragment. In this example, the model fragment contains four elements:
the Pantograph 1, the relation between Pantograph 1 and Circuit Breaker
1, the Circuit Breaker 1, and the HVAC. The first three elements are con-
nected, so they compose the first group. The last element is not connected
to the other elements so this element composes the second group. Since
the dispersion is computed as the ratio between the number of groups and
the number of elements, the dispersion value is equal to 0.5, which means
that the model fragment has a medium dispersion.

Based on these properties, three domain experts discussed whether some of
these three properties should be used to select a balanced training dataset from
the knowledge base. The first expert believed that none of the properties would
have an impact on the results. The second expert believed that density and
dispersion would have an impact on the results, so the knowledge base should
be sampled balancing these properties. The third one believed that the three
properties would have an impact on the results, so the knowledge base should
be sampled balancing the three properties. In fact, the decision about how to
select a balanced training dataset from the knowledge base become complex
and expensive. First, taking into account the domain experts’ opinions, the
sampling of the knowledge base is not obvious. Second, the more balanced the
properties must be, the lower the number of triplets that will be leveraged from
the knowledge base.
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Let us create a training dataset, whose triplets are balanced taking into
account the score. Therefore, the training dataset will contain a similar number
of triplets for each score range (between 0 and 1, between 1 and 2, between
2 and 3, and between 3 and 4). However, the knowledge base only contains
1,500 triplets with scores between 2 and 3. In this case, to be balanced, the
training dataset would have a size of around 6,000 triplets (4 score ranges x
1,500 triplets), even if the size of knowledge base is greater. Suppose that we
decide to create a second training dataset, which not only balances the scores
but also the density. The training dataset will contain a similar number of
triplets for each score range and a similar number of triplets for each density
range (between 0% and 25%, between 25% and 50%, between 50% and 75%,
and between 75% and 100%). However, the knowledge base only contains 1,800
triplets with scores between 2 and 3 and only 100 of these triplets have density
values between 75% and 100%. In this case, to be balanced, this second training
dataset would have a size around of 1,600 triplets (4 scores ranges x 4 density
ranges x 100 triplets). Therefore, the second training dataset discards 4,400
triples, which are leveraged in the first training dataset. In contrast, the second
training dataset is balanced taking into account both the scores and the density.

Our industrial partner has been developing firmware since 1995, and 7,500
triplets have been documented in their knowledge base. However, if the knowl-
edge base were sampled to get a training dataset balanced taking into account
only one of the properties and the scores, the resulting training dataset would
contain approximately 1,600 triplets. Therefore, we would be discarding at least
5,900 triplets. Also, a training dataset that was balanced taking into account
all of the properties would contain a few hundred triplets, so most of the triplets
of the knowledge base would be discarded.

The different beliefs of the domain experts indicate that density, multiplicity,
and dispersion in the model fragments of the knowledge base may have an impact
on the results, but the problem is complex enough to require an experiment
to reach an agreement. First, given the time and effort required to manually
retrieve each triplet, before sampling the knowledge base to obtain a balanced
training dataset, an experiment can help us to determine if balancing any of
the properties makes sense. Second, the experience can also help us to decide
how to sample the knowledge base in order to take advantage of the effort and
time invested. In other words, the experiment could provide information about
which model fragments are the most relevant for learning in order to select the
greatest number of triplets from the knowledge base. These two facts motivated
us to propose the research questions and the experiment that are defined in
Section 4.

4. Evaluation

Since the model fragments of the training datasets have different properties
(density, multiplicity, and dispersion), the goal of this paper is to research the
influence of these properties on the results of a machine learning based approach
for feature location. To do this, this paper provides answers to several research
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questions. The first three research questions focus on determining which prop-
erties influence the results:

RQ1: Do the density values of the model fragments in the training datasets
influence the results?

RQ2: Do the multiplicity values of the model fragments in the training datasets
influence the results?

RQ3: Do the dispersion values of the model fragments in the knowledge base
influence the results?

The following two research questions focus on determining how the proper-
ties influence the results. Therefore, taking into account the previous research
questions, this paper provides answers to the following questions for each prop-
erty that influences the results:

RQ4: What values of a property should be covered by the model fragments in
a training dataset in order to obtain the best results for model fragment
location?

RQ5: If the solution found in the test cases have different property values than
the model fragments in the training dataset, is it possible to obtain good
results?

This section presents the evaluation that was performed to answer the RQs.
It includes a description of the experimental setup, a description of the case
study, the implementation details, the results obtained, and the statistical anal-
ysis performed.

4.1. Experimental Setup

The goal of this experiment is to provide answers to the RQs. To do this,
the experiment was addressed by means of the feature location in models based
on the (FLiM-ML) machine learning approach. However, instead of using the
whole knowledge base for learning, we selected several subsets of the knowledge
base covering different values of each property. These subsets are the train-
ing datasets for learning. Therefore, the approach used each training dataset to
train a classifier, and each classifier was used to evaluate all of the test cases. Fi-
nally, the results of the approach were analyzed to provide the required answers.
Figure 4 shows an overview of the process.

The left part of Figure 4 shows the inputs. Most of these inputs are extracted
from the documentation provided by our industrial partner. The first input that
is provided by our industrial partner is the approved features. The approved
features are the best model fragments for the features in the test cases. Each
approved feature is the correct solution of a test case. In other words, each
approved feature is the result that we expect to obtain through the approach
for a test case. This helps us to compare the results obtained by the approach
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Figure 4: Experimental Setup.

with the correct solutions of the test cases in order to determine how good the
obtained results are.

The following two inputs are the feature descriptions and the sets of
model fragments. Each feature description defines a feature whose model
fragment we want to find (in natural language). Each set of model fragments
is composed of different model fragments, including the one that we want to
find. Specifically, each feature description and the correspondent set of model
fragments compose a test case. Each test case is evaluated through the FLiM-
ML approach in order to find the best model fragment for the described feature
among the model fragments in this set.

The last two inputs are the ontology and the knowledge base. Both
inputs are necessary so that the approach can be used to evaluate the test
cases. On the one hand, the ontology contains the main concepts, properties,
and relations of a domain. Specifically, the ontology is used by the approach
to characterize and encode the model fragments and feature descriptions into a
format that is understandable for the machine learning techniques.

On the other hand, the knowledge base contains triplets with different prop-
erty values (i.e., different scores, density values, multiplicity values, and dis-
persion values). Based on their property values, we select triplets to provide
different training datasets from the knowledge base. To do this, we use purpose
sampling, where items are selected based on their usefulness for achieving the
study’s objective [19]. Therefore, we select the triplets according to the three
properties in order to answer the research questions. Specifically, each training
dataset covers different values of the property that is being analyzed.

In order to answer RQ1, we select the triplets that have a density value be-
tween 0% and 25%, between 25% and 50%, between 50% and 75%, and between
75% and 100%. Therefore, we provide a training dataset whose triplets have
extra-small density values (Density-XS), a training dataset with small density
values (Density-S), a training dataset with medium density values (Density-
M), and a training dataset with large density values (Density-L), respectively.
Moreover, we provide another more training dataset that covers all density val-
ues (Density-A). Specifically, each quarter of the triplets in this dataset was
selected according to the density values of the triplets in the knowledge base:
between 0% and 25%, between 25% and 50%, between 50% and 75%, and be-
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tween 75% and 100%.
In order to answer RQ2, we select the triplets that have a multiplicity value

equal to 1 or greater to 1. The cutoff at 1 was selected taking into account the
definition of multiplicity. A model fragment can be single (=1) or be repeated
(¿1) in the product model. Therefore, we provide a training dataset whose
triplets have unique model fragments for the product model (Multiplicity=1)
and a training dataset whose triplets have non-unique model fragments for the
product model (Multiplicity>1). Moreover, we provide another training dataset
that covers all multiplicity values (Multiplicity-A). Specifically, half of triplets
in this dataset have a multiplicity value equal to 1 and half of the triplets in
this dataset have a multiplicity value greater than 1.

Likewise, in order to answer RQ3, we select the triplets that have a dis-
persion value between 0 and 0.25, between 0.25 and 0.50, between 0.50 and
0.75, and between 0.75 and 1. Therefore, we provide a training dataset of the
knowledge base whose triplets have extra-small dispersion values (Dispersion-
XS), a training dataset with small dispersion values (Dispersion-S), a training
dataset with medium dispersion values (Dispersion-M), and a training dataset
with large dispersion values (Dispersion-L), respectively. Moreover, we provide
another training dataset that covers all dispersion values (Dispersion-A). Specif-
ically, each quarter of the triplets in this dataset was selected according to the
dispersion values of the triplets in the knowledge base: between 0 and 0.25,
between 0.25 and 0.50, between 0.50 and 0.75, and between 0.75 and 1.

In summary, from the knowledge base, we select triplets to compose 13
different training datasets, where 5 training datasets are related to density values
for RQ1, 3 training datasets are related to multiplicity values for RQ2, and 5
training datasets are related to dispersion values for RQ3. In our evaluation,
each training dataset is used by the FLiM-ML approach to evaluate all of the
test cases. Each combination of a training dataset and a test case provides a
ranking of model fragments as output. The top fragment of this ranking is the
best realization of the feature found by means of the FLiM-ML approach. This
top model fragment (obtained solution) is compared with the correspondent
approved feature (correct solution) in order to determine how good the obtained
solution is. This comparison is performed by means of a confusion matrix.

A confusion matrix is a table that is often used to describe the performance of
a classification model (in this case, the performance of each training dataset) on
a set of test data (the test cases) for which the true values are known (from the
approved features). In our case, each model fragment in the test cases obtains
a score in the feature location process. Since the granularity is at the level of
model elements, the presence or absence of each model element is considered
as a classification. The confusion matrix distinguishes between the predicted
values and the real values, classifying them into four categories:

• True Positive (TP): values that are predicted as true (in the obtained
solution) and are true in the real scenario (in the correct solution).

• False Positive (FP): values that are predicted as true (in the obtained
solution) but are false in the real scenario (in the correct solution).
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• True Negative (TN): values that are predicted as false (in the obtained
solution) and are false in the real scenario (in the correct solution).

• False Negative (FN): values that are predicted as false (in the obtained
solution) but are true in the real scenario (in the correct solution).

Then, some performance measurements are derived from the values in the
confusion matrix. Specifically, we create a report that includes four performance
measurements (recall, precision, the F-measure, and the Matthews Correlation
Coefficient) for each combination of a training dataset and a test case.

Recall measures the proportion of elements of the correct solution that are
correctly retrieved by the obtained solution and is defined as follows:

Recall =
TP

TP + FN

Precision measures the proportion of elements from the obtained solution
that are correct according to the correct solution and is defined as follows:

Precision =
TP

TP + FP

The F-measure corresponds to the harmonic mean of precision and recall
and is defined as follows:

F−measure = 2 · Precision · Recall

Precision + Recall
=

2 · TP

2 · TP + FP + FN

However, none of these previous measures take into account negative ex-
amples (TN). The Matthews Correlation Coefficient (MCC) is a correlation
coefficient between the observed and predicted binary classifications that takes
into account all of the observed values (TP, TN, FP, FN) and is defined as
follows:

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Recall values can range between 0% (i.e., no single model element from the
correct solution is present in the obtained solution) and 100% (i.e., all of the
model elements from the correct solution are present in the obtained solution).
Precision values can range between 0% (i.e., no single model element from the
obtained solution is present in the correct solution) and 100% (i.e., all of the
model elements from the obtained solution are present in the correct solution). A
value of 100% precision and 100% recall implies that both the obtained solution
and the correct solution are the same. MCC values can range between −1 (i.e.,
there is no correlation between the obtained solution and the correct solution) to
1 (i.e., the obtained solution is perfect). Moreover, a MCC value of 0 corresponds
to a random prediction.
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Figure 5: Distribution of the approved features for the different density, multiplicity, and
dispersion values.

4.2. Case Study

The case study where we applied feature location was provided by our in-
dustrial partner CAF, and the domain is described in the background of this
work. The case study includes the ontology, 268 test cases, and a knowledge
base with 7,500 triplets. The ontology contains a total of 54 elements consisting
of concepts and relations.

The 268 test cases form part of the learning material that the CAF company
has to train new engineers. Each test case is composed of a feature description
and a set of model fragments. The feature description is defined using natural
language and contains about 25 words. The set of model fragments has about
100 model fragments with different values of density, multiplicity, and dispersion.
Therefore, among the 100 model fragments, the engineer has to find the model
fragment that best realizes the described feature. Similarly, the target of the
approach is to evaluate these 100 model fragments in order to decide which one
is the best realization of the described feature. Figure 5 shows the distribution
of these model fragments regarding the density, multiplicity, and dispersion
properties. Moreover, since these model fragments are the correct solutions,
they always have a score equal to 4, so the score is not considered in the plots.

The knowledge base has about 7,500 triplets, but it does not contain the
same number of triplets for each property value. For example, in the knowledge
base, the number of triplets with small density values is greater than the num-
ber of triplets with large density values. The training datasets were created by
selecting different triplets from this knowledge base. All of the training datasets
are balanced according to the scores. This means that each training dataset
contains the same number of triplets with scores between 0 and 1, between 1
and 2, between 2 and 3, and between 3 and 4. However, in the knowledge base,
there are only 400 triplets with a low score (between 0 and 1) and an extra-
small dispersion value (between 0 and 0.25). Therefore, the training dataset
Dispersion-XS can contain a maximum of 1600 triplets with extra-small disper-
sion values, where 400 triplets have scores between 0 and 1, between 1 and 2,
between 2 and 3, and between 3 and 4. Since the maximum number of triplets
for this dataset is 1,600, we consider that all the training datasets contain 1,600
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Figure 6: Distribution of the training datasets based on density (Density-XS, Density-S,
Density-M, Density-L, and Density-A) according to the scores and density values of their
triplets.

triplets of the knowledge base to be able to compare the results fairly.
The training datasets were created taking into account the research ques-

tions. For RQ1, five training datasets were created based on density: Density-
XS, Density-S, Density-M, Density-L, and Density-A. Figure 6 shows the distri-
bution of these datasets according to the scores and the density values of their
triplets.

Then, for RQ2, three training datasets were created based on multiplicity:
Multiplicity=1, Multiplicity>1, and Multiplicity-A. Figure 7 shows the distri-
bution of these training datasets according to the scores and the multiplicity
values of their triplets.

Finally, for RQ3, five training datasets were created based on dispersion:
Dispersion-XS, Dispersion-S, Dispersion-M, Dispersion-L, and Dispersion-A. Fig-
ure 8 shows the distribution of these datasets according to the scores and the
dispersion values of their triplets.

For each training dataset, we evaluated all of the test cases. Moreover, each
combination of training dataset and test case was run 30 times. As suggested by
[20], given the stochastic nature of the FLiM-ML approach, several repetitions
are needed to obtain reliable results. Finally, the results (obtained solutions)
were compared to the approved features (correct solutions), which are the so-
lutions for each test case. Therefore, the approved features correspond to 268
model fragments, one for each test case.
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Figure 7: Distribution of the training datasets based on multiplicity (Multiplicity=1,
Multiplicity>1, Multiplicity-A) according to the scores and multiplicity values of their triplets
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Figure 8: Distribution of the training datasets based on dispersion (Dispersion-XS, Dispersion-
S, Dispersion-M, Dispersion-L, and Dispersion-A) according to the scores and dispersion values
of their triplets
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Table 1: Kolmogorov–Smirnov test with the Lilliefors correction for all of the training datasets.

Score Density Multiplicity Dispersion

D p-Value D p-Value D p-Value D p-Value

Density-XS 0.103 < 2.20× 10−16 0.128 < 2.20× 10−16 0.259 < 2.20× 10−16 0.259 < 2.20× 10−16

Density-S 0.109 < 2.20× 10−16 0.111 < 2.20× 10−16 0.278 < 2.20× 10−16 0.144 < 2.20× 10−16

Density-M 0.092 < 2.20× 10−16 0.098 < 2.20× 10−16 0.286 < 2.20× 10−16 0.150 < 2.20× 10−16

Density-L 0.156 < 2.20× 10−16 0.129 < 2.20× 10−16 0.286 < 2.20× 10−16 0.128 < 2.20× 10−16

Density-A 0.101 < 2.20× 10−16 0.096 < 2.20× 10−16 0.261 < 2.20× 10−16 0.152 < 2.20× 10−16

Multiplicity=1 0.109 < 2.20× 10−16 0.164 < 2.20× 10−16 * * 0.265 < 2.20× 10−16

Multiplicity>1 0.099 < 2.20× 10−16 0.088 < 2.20× 10−16 0.334 < 2.20× 10−16 0.119 < 2.20× 10−16

Multiplicity-A 0.095 < 2.20× 10−16 0.183 < 2.20× 10−16 0.314 < 2.20× 10−16 0.217 < 2.20× 10−16

Dispersion-XS 0.106 < 2.20× 10−16 0.101 < 2.20× 10−16 0.262 < 2.20× 10−16 0.204 < 2.20× 10−16

Dispersion-S 0.103 < 2.20× 10−16 0.115 < 2.20× 10−16 0.256 < 2.20× 10−16 0.105 < 2.20× 10−16

Dispersion-M 0.097 < 2.20× 10−16 0.161 < 2.20× 10−16 0.258 < 2.20× 10−16 0.394 < 2.20× 10−16

Dispersion-L 0.251 < 2.20× 10−16 0.248 < 2.20× 10−16 0.475 < 2.20× 10−16 0.467 < 2.20× 10−16

Dispersion-A 0.108 < 2.20× 10−16 0.160 < 2.20× 10−16 0.259 < 2.20× 10−16 0.209 < 2.20× 10−16

* The standard deviation is zero

4.2.1. Strength of Correlations

The training datasets are selected to analyze the influence of a specific prop-
erty. However, all of the training datasets are composed of triplets that have
all of the properties: score, density, multiplicity, and dispersion. Therefore, it
is worth knowing whether there is a correlation between the specific property
that is being analyzed through a training dataset and the rest of the properties.

Since the training datasets have 1600 triplets, we use the Kolmogorov–Smirnov
test with the Lilliefors correction to study the normality of each property in each
training dataset. Table 1 shows the values of the test. All of the properties have
p-values under 0.05 in all of the test cases, which means that none of the prop-
erties have a normal distribution. Moreover, the histograms in the appendix
show the distributions of the properties for all of the training datasets. These
plots show that the scores always have a uniform distribution, which is desirable
in order to be able to obtain balanced training datasets for learning.

Since the properties do not have normal distributions, we used a non-parametric
test to measure the correlation. Specifically, the Spearman correlation test was
not only applied to measure the correlation but also to verify the strength of
the correlations.

The first five training datasets (Density-XS, Density-S, Density-M, Density-
L, and Density-A) are selected to analyze the influence of the density property.
Therefore, we first analyze whether there is any correlation between the density
property and the rest of the properties in these training datasets. Table 2
shows the Spearman correlation coefficients, which indicate the strength of the
correlation between the density property and one of the other properties in
these training datasets. A correlation coefficient of zero indicates that there
is no relation, and a correlation coefficient of −1 or +1 indicates a perfect
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Table 2: Spearman’s correlation coefficients between the density and the rest of the properties
(Score, Multiplicity, and Dispersion) in density-based training datasets: Density-XS, Density-
S, Density-M, Density-L, and Density-A.

Score Multiplicity Dispersion

Density-XS 0.204 0.099 -0.090

Density-S 0.047 0.115 0.022

Density-M 0.072 0.162 0.049

Density-L -0.054 -0.489 -0.454

Density-A 0.083 0.338 -0.450

Table 3: Spearman’s correlation coefficients between the multiplicity and the rest of the prop-
erties (Score, Density, and Dispersion) in multiplicty-based training datasets: Multipliciyty=1,
Multiplicity>1, and Multiplicity-A.

Score Density Dispersion

Multiplicity=1 * * *

Multiplicity>1 9.921× 10−5 -0.004 -0.016

Multiplicity-A 0.013 0.247 -0.347

* The standard deviation is zero

relationship between them. Most correlation coefficients in Table 2 indicate
that there is a weak relation or there is no relation between the density and the
other properties. However, there is a moderate relation between the density and
the multiplicity and a moderate relation between the density and the dispersion
in the last two training datasets, Density-L and Density-A.

The following three training datasets (Multipliciyty=1, Multiplicity>1, and
Multiplicity-A) are selected to analyze the influence of the multiplicity property.
Therefore, we first analyze whether there is any correlation between the multi-
plicity property and the rest of the properties in these training datasets. Table 3
shows the Spearman correlation coefficients, which indicate the strength of the
correlation between the multiplicity property and one of the other properties in
these training datasets. Most correlation coefficients in Table 3 indicate that
there is no relation between the density and the other properties. However,
there is a weak relation between the multiplicity and the density and a weak
relation between the multiplicity and the dispersion in the last training dataset,
Multiplicity-A.

The following last five training datasets (Dispersion-XS, Dispersion-S, Dispersion-
M, Dispersion-L, and Dispersion-A) are selected to analyze the influence of the
dispersion property. Therefore, we first analyze if there is any correlation be-
tween the dispersion property and the rest of the properties in these training
datasets. Table 4 shows the Spearman correlation coefficients, which indicates
the strength of the correlation between the dispersion property and one of the
other properties in these training datasets. Most correlation coefficients in Table
4 indicate that there is a weak relation or there is no relation between the dis-
persion and the other properties. However, there is a moderate relation between
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Table 4: Spearman’s correlation coefficients between the dispersion and the rest of the prop-
erties (Score, Density, and Multiplicity) in dispersion-based training datasets: Dispersion-XS,
Dispersion-S, Dispersion-M, Dispersion-L, and Dispersion-A.

Score Density Multiplicity

Dispersion-XS 0.054 0.392 0.205

Dispersion-S 0.203 0.094 0.161

Dispersion-M 0.072 0.048 0.162

Dispersion-L -0.053 -0.454 -0.489

Dispersion-A 0.053 -0.358 -0.213

the dispersion and the multiplicity in the Dispersion-L training dataset.
According to the correlation coefficients, there are a few moderate relations.

However, in most of the cases, there are no relations or the relations are weak.
In fact, none of the moderate relations correspond to the training datasets that
achieve the best results in our evaluation.

4.3. FLiM-ML Approach.

The FLiM-ML [5] is a machine learning-based approach for feature location
on models. In this work, the FLiM-ML approach was used to evaluate the
different training datasets that serve to answer the RQs of this work. Figure 9
shows an overview of the FLiM-ML approach, whose objective is to provide a
ranking of model fragments. The top model fragment in the ranking is the best
realization found for a feature description. To do this, the approach has two
phases: training and testing.

In the training phase, a classifier is trained to learn how well each model
fragment realizes a specific feature description. To do this, the input consists
of an ontology and a training dataset. In our case, instead of using the whole
knowledge base, we used the training datasets that are described in the experi-
mental setup and the case study.

The training phase consists of four steps:

1. Encoding: The ontology is used to encode the triplets of a training dataset
into feature vectors, as described in [21]. Moreover, since both feature de-
scriptions and model fragments are based on natural language, the terms
used in the ontology do not always align well with the terms in the feature
description and with the terms in the model fragments. For this reason,
before encoding, the feature descriptions and the model fragments are
processed by a combination of NLP techniques defined in [22], which con-
sists of tokenizing, lowercasing, removal of duplicate keywords, syntactical
analysis, lemmatization, and stopword removal.

2. Feature selection: A mask is applied to select only the most relevant char-
acteristics in the feature vectors. To do this, a set of masks is generated
and evolved by means of an evolutionary algorithm as in [21]. As a re-
sult, the top mask in the ranking, which is obtained from the evolutionary
algorithm, indicates the selected characteristics.

20



Feature
Description

Legend
Model Fragment Model Elements Element Property

Model
Fragment

Step 5 A EncodingStep 7 A Encoding

Step 2 A Feature
Selection

Step 3 A Tuning

Step 4 ATraining with
Machine Learning Technique Classifier

Testing Set
Feature Vectors

Training Set
Feature Vectors

Mask
Tuned

Parameters

Knowledge Base

Feature
Description

The system turns
on the led of the
button that closes
the doors of one
side of the train if
all the doors of
the correspondent
side are closed or
convictedO

Score

3O8 R 4

Model Fragment

Composition

Access
State

Cabin

Door7

Button7
Pushed
Led

State
Door2

State
Door3

State
Door4

Button7
Pushed
Led

Car7 Car2 Car3

Ontology

R7

R2

R6

CompositionC7

CabinC6 CarC2

DoorC3

AccessP7

StateP2

Control
Panel

C5

R5

ButtonC4

PushedP3

R3R4

LedP4

Model Fragment Ranking

3O7

Composition

Access
State

Cabin

Door7

Button7
Pushed
Led

State
Door2

State
Door3

State
Door4

Button7
Pushed
Led

Car7 Car2 Car3

3O5

Composition

Access
State

Cabin

Door7

Button7
Pushed
Led

State
Door2

State
Door3

State
Door4

Button7
Pushed
Led

Car7 Car2 Car3

OOO

Figure 9: Overview of the FLiM-ML approach.
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3. Tuning: This determines what parameters must be used to obtain the
best performance of the machine learning technique. The parameter tun-
ing in the FLiM-ML approach is based on grid search. First, a grid search
is built to determine the values of the parameters, which depend on the
machine learning technique selected. Then, the FLiM-ML approach uni-
formly samples each of the parameters in their range and evaluates all of
the combinations of the sampled values.

4. Training with machine learning technique: The feature vectors are used
to train the classifier, which learns a rule-set through the comparison of
the feature vectors [23]. However, before using this classifier in the testing
phase, it is worth analyzing the performance of the classifier through cross-
validation. Cross-validation is a statistical method of evaluating and com-
paring machine learning techniques by dividing data into two segments:
one used to train a classifier, and the other used to validate the classifier
[24]. Moreover, to reduce variability, multiple rounds of cross-validation
are performed using different partitions, and the results are averaged over
the rounds [25].

The results of the cross-validation provide the performance of the clas-
sifier. If this performance is not considered suitable, it is necessary to
perform another training iteration. In this iteration, some artifacts of the
training phase (e.g., the encoding, the ontology, the training dataset, or
the machine learning technique) must be modified in order to improve the
classifier. Otherwise, if the performance is considered suitable, the classi-
fier obtains the go-ahead, so the classifier trained with the training dataset
is used in the testing phase. Once the classifier has been generated, the
training phase does not have to be repeated again. The same classifier is
used to evaluate all of the test cases for the same training dataset in the
testing phase. Therefore, the classifier is considered as both an artifact
(output of Step 4 in the training phase) and a step (responsible for testing
the test cases in the testing phase). For this reason, Figure 9 shows the
classifier in a black, rounded rectangle to point out its double meaning.

In the testing phase, the classifier is used to rank the set of model fragments
according to a feature description described in natural language. To do this,
the input consists of the set of model fragments, the feature description, and an
ontology. Each model fragment realizes the feature description to a greater or
lesser extent.

The testing phase consists of two steps:

5. Encoding: The ontology is used to encode each model fragment and the
feature description. To be fair, both the characteristics of the encoding
and the ontology must be same for the the training phase and the testing
phase. As a result, each model fragment and the feature description are
encoded as a feature vector.

6. Classifier: Each feature vector is then tested by the classifier, which uses
the learned rule-set to assign a score to each one of them. This score is a
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numerical value that is equal to or greater than 0. The higher the score,
the closer the model fragment to the feature description. Therefore, this
model fragment would be a better realization of the feature description
than any other model fragment with a lower score. Taking into account
the scores, the model fragments can be ordered in a ranking where the top
positions are occupied by the model fragments with the highest relevance
to the feature description. This ranking is the final result of the FLiM-ML
approach.

4.4. Implementation details

We used the Eclipse Modeling Framework to manipulate the models and
CVL to manage the model fragments. With regard to the machine learning
technique, FLiM-ML can support several machine learning techniques, such as
Rankboost.

RankBoost belongs to the family of Learning to Rank, whose algorithms
are specifically designed to perform ranking tasks. Moreover, Rankboost is well
known for its efficiency and effectiveness in different domains [26, 27]. In fact,
among the machine learning techniques supported by FLiM-ML, Rankboost
is notable for its good results in other fragment location problems [9]. For
these reasons, Rankboost was selected as the machine learning technique for
the approach in this work.

RankBoost was implemented using the RankLib library [28] and tuned using
a grid search. Specifically, Rankboost has two parameters that have to be tuned
to improve its performance. The first one is related to the number of iterations
to search in each dimension. The second one is related to the metric, which is
used to evaluate the test data. The values tuned for our evaluation correspond
to iteration = 200 and metric equal to ERR10, respectively.

4.5. Results

In Table 5, we outline the mean results for the test cases regarding the
training datasets (Density-XS, Density-S, Density-M, Density-L, and Density-
A) that answer RQ1. Each column shows the Precision, Recall, F-measure, and
MCC obtained through each dataset.

In response to RQ1, there are clear differences between the results ob-
tained for the different training datasets. A Table 5 shows, Density-XS achieves
the best results for all of the performance indicators, providing a mean preci-
sion value of 89.74%, a recall value of 82.26%, a F-measure value of 84.16%,
and a MCC value of 0.81. In contrast, Density-L presents the worst results
for all of the indicators, providing a mean precision value of 46.74%, a recall
value of 41.22%, a F-measure value of 42.71%, and a MCC value of 0.28. These
results indicate that the density values of the model fragments in the training
dataset influence the results. However, the statistical analysis is the final step
to claim that the results of the five training datasets are significantly different
and assesses the magnitude of the improvement from Density-XS.

Therefore, since RQ1 was answered affirmatively, we needed to answer RQ4
and RQ5 for the density property. In response to RQ4, Table 5 shows that
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Table 5: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and MCC for
the test cases regarding the training datasets (Density-XS, Density-S, Density-M, Density-L,
and Density-A) that answer RQ1.

Precision Recall F-measure MCC

Density-XS 89.74 ± 25.46 82.26 ± 32.11 84.16 ± 29.50 0.81

Density-S 60.73 ± 43.47 58.62 ± 45.21 58.41 ± 44.07 0.47

Density-M 59.17 ± 44.34 57.22 ± 45.32 57.47 ± 44.44 0.48

Density-L 46.74 ± 40.57 41.22 ± 41.35 42.71 ± 40.85 0.28

Density-A 82.06 ± 32.84 74.84 ± 37.50 76.35 ± 35.47 0.72

Density-XS achieves the best results for all of the performance indicators. More-
over, there is at least a difference of 7% between the recall, the precision, and the
F-measure obtained for Density-XS and the rest of the training datasets. For the
MCC, the difference between Density-XS and the rest of the training datasets
is at least equal to 0.09. These results indicate that a machine learning-based
approach like FLiM-ML can obtain different results depending on the density
values of the model fragments in the training dataset. In fact, for FLiM-ML
and the case study presented in this work, the training dataset should cover the
extra-small density values in order to obtain the best results.

To answer RQ5, Table 6 shows the mean results for the test cases grouped by
the density values of their approved features. Each column shows the Precision,
Recall, F-measure, and MCC obtained through each training dataset. Figure 5
shows the number of approved features according to their density values.

In response to RQ5, as Table 6 shows, Density-XS achieves the best
results for all of the performance indicators regardless of the test cases. Density-
XS obtained the best results for the test cases whose approved features have
density values between 0 and 25, providing a mean precision value of 87.85%,
a recall value of 86.83%, a F-measure value of 86.80%, and a MCC value of
0.86. This same training dataset obtained the best results for the test cases
whose approved features have density values between 25 and 50, providing a
mean precision value of 96.30%, a recall value of 90.74%, a F-measure value of
92.10%, and a MCC value of 0.92. This same training dataset also obtained
the best results for the test cases whose approved features have density values
between 50 and 75, providing a mean precision value of 75.93%, a recall value
of 63.37%, a F-measure value of 68.16%, and a MCC value of 0.55. Finally,
the same training dataset obtained the best results for the test cases whose
approved features have density values between 75 and 100, providing a mean
precision value of 95.37%, a recall value of 83.49%, a F-measure value of 85.66%,
and a MCC value of 0.83. Therefore, although the approved features for the
test cases have different density values than the model fragments in the training
dataset, the obtained results can be even better than the results obtained using
model fragments with similar density values.
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Table 6: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and MCC for
the test cases grouped by the density values of their approved features regarding the training
datasets: Density-XS, Density-S, Density-M, Density-L, and Density-A.

Density values

in test cases
Training Dataset Precision Recall F-measure MCC

[0,25)

Density-XS 87.85 ± 27.18 86.83 ± 30.40 86.80 ± 29.08 0.86

Density-S 59.40 ± 45.88 59.44 ± 47.76 59.11 ± 46.87 0.58

Density-M 55.76 ± 48.52 56.86 ± 49.00 56.24 ± 48.71 0.55

Density-L 41.86 ± 44.02 39.75 ± 44.85 40.08 ± 44.55 0.38

Density-A 85.21 ± 30.43 84.03 ± 32.82 83.87 ± 31.94 0.83

[25,50)

Density-XS 96.30 ± 17.52 90.74 ± 25.16 92.10 ± 21.94 0.92

Density-S 61.33 ± 39.08 60.62 ± 41.52 59.06 ± 39.57 0.49

Density-M 45.92 ± 43.43 44.44 ± 44.78 43.99 ± 42.95 0.35

Density-L 41.96 ± 39.69 36.48 ± 39.83 37.79 ± 39.31 0.28

Density-A 76.61 ± 40.63 73.33 ± 41.57 73.72 ± 40.59 0.73

[50,75)

Density-XS 75.93 ± 37.71 63.37 ± 35.24 68.16 ± 35.40 0.55

Density-S 45.85 ± 45.07 44.59 ± 44.44 44.70 ± 44.17 0.20

Density-M 51.57 ± 43.13 45.06 ± 40.06 47.09 ± 40.33 0.27

Density-L 42.86 ± 39.96 36.61 ± 35.70 38.64 ± 36.57 0.14

Density-A 72.84 ± 35.66 59.67 ± 35.88 63.70 ± 34.48 0.49

[75,100]

Density-XS 95.37 ± 11.27 83.49 ± 32.46 85.66 ± 27.67 0.83

Density-S 72.57 ± 41.26 66.36 ± 45.33 67.36 ± 43.84 0.56

Density-M 81.44 ± 33.09 79.48 ± 37.48 79.94 ± 35.80 0.70

Density-L 59.18 ± 36.38 50.84 ± 42.47 53.25 ± 40.57 0.28

Density-A 91.36 ± 19.08 78.80 ± 35.72 81.15 ± 31.59 0.77
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Table 7: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and
MCC for the test cases regarding the training datasets (Multiplicity=1, Multiplicity>1, and
Multiplicity-A) that answer RQ2.

Precision Recall F-measure MCC

Multiplicity=1 91.13 ± 23.44 89.91 ± 26.10 89.86 ± 24.83 0.89

Multiplicity>1 90.26 ± 24.77 87.94 ± 28.26 88.16 ± 26.56 0.88

Multiplicity-A 92.14 ± 21.99 89.97 ± 26.12 90-06 ± 24.25 0.90

Table 8: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and MCC
for the test cases regarding the training datasets (Dispersion-XS, Dispersion-S, Dispersion-M,
Dispersion-L, and Dispersion-A) that answer RQ3.

Precision Recall F-measure MCC

Dispersion-XS 86.84 ± 30.38 86.96 ± 26.29 85.63 ± 28.72 0.85

Dispersion-S 86.79 ± 30.24 87.21 ± 26.56 85.75 ± 28.83 0.85

Dispersion-M 33.61 ± 32.31 34.61 ± 33.88 32.72 ± 32.48 0.28

Dispersion-L 66.58 ± 39.97 67.20 ± 35.98 65.86 ± 37.77 0.64

Dispersion-A 73.73 ± 37.16 78.77 ± 29.27 73.80 ± 33.89 0.73

In Table 7, we outline the mean results for the test cases for the train-
ing dataset (Multiplicity=1, Multiplicity>1, and Multiplicity-A) that answer
RQ2. Each column shows the Precision, Recall, F-measure, and MCC obtained
through each dataset.

In response to RQ2, the results obtained for all the training datasets
are very similar. Therefore, Table 7 does not have enough evidence to say
with certainty that multiplicity influences the results. For this reason, RQ2 is
answered taking into account the statistical analysis.

In Table 8, we outline the mean results for the test cases for the training
datasets (Dispersion-XS, Dispersion-S, Dispersion-M, Dispersion-L, and Dispersion-
A) that answer RQ3. Each column shows the Precision, Recall, F-measure, and
MCC obtained through each dataset.

In response to RQ3, there are clear differences between the results ob-
tained for the different training datasets. A Table 5 shows, Dispersion-XS and
Dispersion-S achieve the best results: Dispersion-XS attains 86.84% precision,
86.96% recall, 85.63% F-measure, and 0.85 MCC; and Dispersion-S attains
86.79% precision, 87.21% recall, 85.75% F-measure, and 0.85 MCC. In con-
trast, Dispersion-M presents the worst results in all of the indicators, providing
a mean precision value of 33.61%, a recall value of 34.61%, a F-measure value
of 32.72%, and a MCC value of 0.28. These results indicate that the dispersion
of the model fragments in the training dataset influence the results. However,
the statistical analysis is the final step to claim that the results of the five
training datasets are significantly different and assesses the magnitude of the
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improvement from Dispersion-XS or Dispersion-S.
Therefore, since RQ3 was answered affirmatively, we needed to answer RQ4

and RQ5 for the dispersion property. In response to RQ4, Table 8 shows
that Dispersion-XS and Dispersion-S achieve the best results for all of the per-
formance indicators. Moreover, the difference between the recall, the precision,
and the F-measure obtained for these two training datasets and the rest of the
training datasets is greater than 12%. For MCC, the difference between these
two training datasets and the rest of the training datasets is at least equal to
0.12. To all appearances, these results indicate that a machine learning-based
approach like FLiM-ML can obtain different results depending on the dispersion
values of the model fragments in the training dataset. In fact, for FLiM-ML
and the case study presented in this work, the training dataset should cover
extra-small dispersion values or small dispersion values in order to obtain the
best results. However, a statistical analysis can determine if whether or not
there are significant differences between the results of FLiM-ML for extra-small
dispersion values and the results for small dispersion values.

To answer RQ5, Table 9 shows the mean results for the test cases grouped by
the dispersion values of the approved features. Each column shows the Precision,
Recall, F-measure, and MCC obtained through each training dataset. Figure 5
shows the number of approved features according to their dispersion values.

In response to RQ5, as Table 9 shows, four training datasets (Dispersion-
XS, Dispersion-S, Dispersion-L, and Dispersion-A) achieve similar results for
the test cases where the approved features have dispersion values between 0 and
0.50. Three training datasets (Dispersion-XS, Dispersion-S, and Dispersion-A)
achieve similar results for test cases where the approved features have disper-
sion values between 0.75 and 1 or between 0.50 and 0.75. Finally, for the test
cases where the approved features have dispersion values between 0.75 and 1,
two training datasets (Dispersion-XS and Dispersion-S) achieve similar results.
Therefore, for the dispersion property, there are more than one training datasets
that obtain the best results for test cases where the approved features have dif-
ferent dispersion values than the model fragments in the training datasets.

4.6. Statistical Analysis

A statistical test must be run to assess whether there is enough empirical
evidence to claim that there is a difference between two approaches (e.g., A is
better than B). To achieve this, two hypotheses are defined: the null hypothesis
H0, and the alternative hypothesis H1. The null hypothesis H0 is typically
defined to state that there is no difference between the approaches, whereas
the alternative hypothesis H1 states that the training datasets differ. In such a
case, a statistical test aims to verify whether the null hypothesis H0 should be
rejected.

Statistical tests provide a probability value, p-Value. The p-Value obtains
values between 0 and 1. The lower the p-Value of a test, the more likely that
the null hypothesis is false. It is accepted by the research community that a
p-Value under 0.05 is statistically significant [29], and so the hypothesis H0 can
be considered false.
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Table 9: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and MCC
for the test cases grouped by the dispersion values of their approved features regarding the
training datasets: Dispersion-XS, Dispersion-S, Dispersion-M, Dispersion-L, and Dispersion-
A.

Dispersion values

in test cases
Training Dataset Precision Recall F-measure MCC

[0,0.25)

Dispersion-XS 100.00 ± 0.00 88.56 ± 7.79 93.76 ± 4.25 0.93

Dispersion-S 100.00 ± 0.00 89.55 ± 8.12 94.30 ± 4.43 0.94

Dispersion-M 30.27 ± 12.57 17.41 ± 11.76 21.75 ± 11.37 0.14

Dispersion-L 100.00 ± 0.00 88.56 ± 7.79 93.76 ± 4.25 0.93

Dispersion-A 100.00 ± 0.00 89.30 ± 8.05 94.17 ± 4.39 0.94

[0.25,0.50)

Dispersion-XS 95.24 ± 15.82 93.37 ± 20.20 93.68 ± 18.84 0.93

Dispersion-S 95.14 ± 15.07 92.87 ± 21.60 93.43 ± 19.58 0.92

Dispersion-M 54.04 ± 44.00 51.14 ± 45.02 51.79 ± 44.75 0.46

Dispersion-L 77.11 ± 36.41 73.51 ± 40.10 74.69 ± 38.64 0.71

Dispersion-A 94.89 ± 15.98 92.44 ± 21.65 93.02 ± 19.96 0.92

[0.50,0.75)

Dispersion-XS 73.96 ± 42.87 74.13 ± 42.36 73.82 ± 42.44 0.73

Dispersion-S 74.10 ± 42.54 74.63 ± 42.49 74.14 ± 42.27 0.73

Dispersion-M 23.66 ± 37.42 27.36 ± 36.55 24.88 ± 36.71 0.21

Dispersion-L 58.21 ± 49.50 56.72 ± 49.06 57.16 ± 49.04 0.54

Dispersion-A 74.23 ± 42.73 75.12 ± 42.82 74.14 ± 42.44 0.72

[0.75,1]

Dispersion-XS 78.17 ± 34.87 91.79 ± 18.78 81.28 ± 30.45 0.82

Dispersion-S 77.92 ± 35.13 91.79 ± 18.78 81.13 ± 30.63 0.81

Dispersion-M 26.46 ± 13.39 42.54 ± 21.91 32.47 ± 16.40 0.30

Dispersion-L 31.00 ± 8.22 50.00 ± 15.19 37.81 ± 9.60 0.37

Dispersion-A 25.81 ± 9.30 58.21 ± 20.72 33.86 ± 8.85 0.35
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Table 10: Quade test statistic and p-Values.

Precision Recall F-Measure MCC

Density
p-Value < 2.20× 10−16 < 2.20× 10−16 < 2.20× 10−16 < 2.20× 10−16

Statistic 79.79 63.62 71.41 65.50

Multiplicity
p-Value 0.41 0.15 0.35 0.51

Statistic 0.87 1.86 1.06 0.67

Dispersion
p-Value < 2.20× 10−16 < 2.20× 10−16 < 2.20× 10−16 < 2.20× 10−16

Statistic 118.7 126.6 111.89 117.41

The test carried out depends on the properties of the data. Since our data
does not follow a normal distribution in general, our analysis required the use
of non-parametric techniques. There are several tests for analyzing this kind of
data; however, the Quade test is the most powerful one when working with real
data [30]. In addition, according to Conover [31], the Quade test is the one that
has shown the best results for a low number of datasets (no more than 4 or 5
datasets).

Table 10 shows the Quade test statistic and p-Values for precision, recall,
F-measure, and MCC. In the case of density and dispersion, the p-Values are
smaller than 0.05, so we could reject the null hypothesis. In contrast, in the
case of multiplicity, the p-Values are not smaller than 0.05, so we could not
reject the null hypothesis. Consequently, we can state that there are signifi-
cant differences among the results of the five training datasets for density and
among the results of the five training datasets for dispersion. However, there
are no significant differences among the results of the three training datasets for
multiplicity. Therefore, in response to RQ1, the statistical analysis determines
that density influences the results. In response to RQ2, the statistical analysis
determines that multiplicity does not influence the results. In response to RQ3,
the statistical analysis determines that dispersion influences the results.

Nevertheless, with the Quade test, we cannot answer the following question:
Which of the training datasets regarding density gives the best performance? and
Which of the training datasets regarding dispersion gives the best performance
In this case, the performance of each training dataset should be individually
compared with all of the other alternatives. In order to do this, we performed
an additional post hoc analysis. This kind of analysis performs a pair-wise
comparison among the results of each training dataset, determining whether
statistically significant differences exist among the results of a specific pair of
datasets.

Table 11 shows the p-Values of Holm’s post hoc analysis for each specific pair
of training datasets according to the RQs. Most of the p-Values shown in this
table are smaller than 0.05, so these comparisons have significant differences for
all of the performance measurements. However, Table 11 shows that there are no
significant differences between Density-S and Density-M, between Dispersion-
XS and Dispersion-S, and between Dispersion-L and Dispersion-A.
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Table 11: Holm’s Post Hoc p-Values.

Precision Recall F-Measure MCC

Density

Density-XS vs Density-S < 2.0× 10−16 5.8× 10−11 7.6× 10−14 1.4× 10−13

Density-XS vs Density-M < 2.0× 10−16 1.4× 10−12 1.0× 10−14 4.9× 10−15

Density-XS vs Density-L < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16

Density-XS vs Density-A 1.7× 10−3 9.7× 10−3 7.1× 103 3.9× 10−3

Density-S vs Density-M 0.37 0.5 0.64 1.0

Density-S vs Density-L 1.4× 10−5 4.9× 10−8 6.3× 10−7 9.8× 10−7

Density-S vs Density-A 4.7× 10−12 6.4× 10−8 8.1× 10−10 3.5× 10−10

Density-M vs Density-L 1.1× 10−7 2.2× 10−9 9.8× 10−9 1.0× 10−7

Density-M vs Density-A < 2.0× 10−16 1.6× 10−11 2.0× 10−13 5.4× 10−16

Density-L vs Density-A < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16

Dispersion

Dispersion-XS vs Dispersion-S 0.99 0.49 0.61 0.6

Dispersion-XS vs Dispersion-M < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16

Dispersion-XS vs Dispersion-L 2.4× 10−10 1.6× 10−13 6.2× 10−10 2.8× 10−10

Dispersion-XS vs Dispersion-A 1.0× 10−11 1.1× 10−6 1.2× 10−8 < 2.7× 10−9

Dispersion-S vs Dispersion-M < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16

Dispersion-S vs Dispersion-L 8.7× 10−11 3.1× 10−14 7.2× 10−11 2.1× 10−11

Dispersion-S vs Dispersion-A 2.3× 10−10 1.4× 10−8 9.7× 10−10 4.4× 10−10

Dispersion-M vs Dispersion-L < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16

Dispersion-M vs Dispersion-A < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16 < 2.0× 10−16

Dispersion-L vs Dispersion-A 0.56 2.7× 10−5 0.38 0.068

4.7. Effect Size

Statistically significant differences can be obtained even if they are so small
as to be of no practical value [29]. It is then important to assess whether a
training dataset is statistically better than another and to assess the magnitude
of the improvement. Effect size measures are needed to analyze this.

For a non-parametric effect size measure, we used Vargha and Delaney’s
Â12 [32]. Â12 measures the probability that running one training dataset yields
higher values than running another training dataset. If the two training datasets
are equivalent, then Â12 will be 0.5.

For example, Â12 = 0.7 means that we would obtain better results in 70% of
the runs with the first of the pair of training datasets that have been compared,
and Â12 = 0.3 means that we would obtain better results in 70% of the runs
with the second of the pair of training datasets that have been compared. Thus,
we have an Â12 value for every pair of training datasets.

Table 12 shows the values of the effect size statistics between for each pair
of training datasets. In response to RQ4 regarding density, Density-XS
obtains the best results, and Table 12 shows the superiority of this dataset in
comparison to the others. Specifically, the Â12 measures indicates that Density-
XS would obtain better results than Density-S in 68% of the runs for precision,
in 64% of the runs for recall, in 66% of the runs for F-measure, and in 66%
of the runs for MCC. Density-XS would obtain better results than Density-M
in 69% of the runs for precision, in 65% of the runs for recall, in 67% of the
runs for F-measure, and in 67% of the runs for MCC. Density-XS would obtain
better results than Density-L in 77% of the runs for precision, in 76% of the
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Table 12: Â12 statistic for each pair of training datasets.

Precision Recall F-Measure MCC

Density

Density-XS vs Density-S 0.68 0.64 0.66 0.66

Density-XS vs Density-M 0.69 0.65 0.67 0.67

Density-XS vs Density-L 0.77 0.76 0.76 0.76

Density-XS vs Density-A 0.56 0.55 0.55 0.55

Density-S vs Density-M 0.51 0.52 0.51 0.50

Density-S vs Density-L 0.58 0.59 0.58 0.59

Density-S vs Density-A 0.37 0.40 0.39 0.38

Density-M vs Density-L 0.57 0.57 0.57 0.59

Density-M vs Density-A 0.36 0.39 0.38 0.37

Density-L vs Density-A 0.28 0.29 0.29 0.28

Dispersion

Dispersion-XS vs Dispersion-S 0.50 0.50 0.50 0.50

Dispersion-XS vs Dispersion-M 0.84 0.84 0.84 0.84

Dispersion-XS vs Dispersion-L 0.63 0.67 0.65 0.65

Dispersion-XS vs Dispersion-A 0.60 0.59 0.60 0.60

Dispersion-S vs Dispersion-M 0.84 0.84 0.84 0.84

Dispersion-S vs Dispersion-L 0.63 0.67 0.65 0.66

Dispersion-S vs Dispersion-A 0.59 0.60 0.60 0.60

Dispersion-M vs Dispersion-L 0.28 0.27 0.27 0.26

Dispersion-M vs Dispersion-A 0.24 0.19 0.22 0.20

Dispersion-L vs Dispersion-A 0.46 0.41 0.45 0.44

runs for recall, in 76% of the runs for F-measure, and in 56% of the runs for
MCC. Density-XS would obtain better results than Density-S in at least 55% of
the runs for precision, in 55% of the runs for recall, in at least 66% of the runs
for F-measure, and in at least 55% of the runs for MCC.

Table 12 shows the values of the effect size statistics for each pair of train-
ing datasets. In response to RQ4 regarding dispersion, Dispersion-XS
and Dispersion-S obtain the best results. Moreover, according to the post
hoc analysis, there are no significant differences between these datasets. Ta-
ble 12 shows that they are equivalent because all of the Â12 values for all of
the indicators are equal to 0.5. The table also shows the superiority of these
training datasets in comparison to the others. Specifically, the Â12 measures
indicates that Dispersion-XS and Dispersion-S would obtain better results than
Dispersion-M in 84% of the runs for precision, in 84% of the runs for recall, in
84% of the runs for F-measure, and in 84% of the runs for MCC. Dispersion-XS
and Dispersion-S would obtain better results than Dispersion-L in 63% of the
runs for precision, in 67% of the runs for recall, in 65% of the runs for F-measure,
and in at least 65% of the runs for MCC. Dispersion-XS and Dispersion-S would
obtain better results than Dispersion-A in at least 59% of the runs for precision,
in at least 59% of the runs for recall, in 60% of the runs for F-measure, and in
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60% of the runs for MCC.

5. Discussion

This section discusses the results obtained in the evaluation through a ma-
chine learning-based approach for feature location on models. These results
correspond to a single case study, which is real and industrial. Specifically, the
obtained results highlight that Density-XS achieves better results than any other
training datasets regarding density. There is no significant difference between
the training datasets regarding multiplicity. Dispersion-XS and Dispersion-S
achieve better results than the other training datasets regarding dispersion, and
there is no significant difference between Dispersion-XS and Dispersion-S.

The first aspect of the results that can be discussed is the fact that none of the
model fragment properties has to be balanced in order to obtain the best feature
location results. The density requires extra-small values, the multiplicity does
not matter, and the dispersion requires extra-small or small values. This fact can
be surprising since it is conventional wisdom that an imbalanced dataset tends to
have worse results. Therefore, we could hope that the training dataset with the
balanced model fragment properties (Density-A, Multiplicity-A, and Dispersion-
A) will obtain the best results. When this research started, three domain experts
discussed whether some of three model fragment properties should be used to
balance the training dataset. None of the domain experts considered sampling
the knowledge base using model fragments that only have some specific property
values because this means that the resulting training dataset is imbalanced for
that property. However, taking into account the results, none of the three
properties has to be balanced for our case study. Although this is a surprising
result, it is indeed positive and beneficial for our case study, where the Ranboost
algorithm can leverage a greater number many triplets from the knowledge.

The more balanced the properties must be, the lower the number of triplets
that will be leveraged from the knowledge base. For example, if we decide to
create a training dataset that balances the scores and the density values, the
training dataset will contain a similar number of triplets for each score range
(between 0 and 1, between 1 and 2, between 2 and 3, and between 3 and 4) and
for each density range (between 0% and 25%, between 25% and 50%, between
50% and 75%, and between 75% and 100%). However, the knowledge base only
contains 1,800 triplets with scores between 2 and 3, and only 100 of these triplets
have density values between 75% and 100%. In this case, to be balanced, this
training dataset will have a size around 1,600 triplets (4 scores ranges x 4 density
ranges x 100 triplets). Therefore, 5,900 triplets will be discarded to obtain this
balanced training dataset. If we do not have to balance the training dataset for
the density values, we will be able to exploit a greater number of triplets from
knowledge base.

Since none of the three properties has to be balanced for our case, we only
have to balance the scores so that the sampling is affordable. Nevertheless, if
several properties had to be balanced, we would have to decide whether the
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improvement in the results compensates the cost of discarding a great number
of triplets.

The second aspect of the results that can be discussed is the relation among
the training datasets.

With regard to density, the model fragments with extra-small density
values achieve results with up to 43% more precision, 41% more recall, 42% more
F-measure, and 0.53 more MCC than the model fragments with other density
values. However, the improvement in the results is progressive. The lower the
density, the better the results are. Density-L obtains the worst result. Density-
M obtains better results than Density-L. Density-S obtains better results than
Density-M. Finally, Density-XS obtains better results than Density-S. In the
case of Density A, since the dataset contains model fragments with all of the
density values, it obtains better results than Density-L but worse results than
Density XS. Table 5 and Table 6 show this progressive improvement in the
results.

Note that this progressive improvement is very logical. With extra-small
model fragments, we can compose a bigger model fragment by joining several
extra-small model fragments like pieces of a puzzle. Regardless of the density of
the model fragment that we try to find (small, medium, or large), the machine
learning classifier can locate each extra-small model fragment that composes
this small, medium, or large model fragment. Therefore, the training dataset
with extra-small model fragments has enough information to locate any model
fragment regardless of its density value. Likewise, the small model fragments
can be joined to compose medium and large model fragments. In this case,
the machine learning classifier may have problems locating extra-small model
fragments because it is not possible to know how to divide small model frag-
ments into extra-small model fragments. For this reason, the training dataset
with small model fragments (Density-S) does not obtain better results than the
training dataset with extra-small density model fragments (Density-XS). The
same behaviour is shown for the results of the Density-M and Density-L training
datasets.

With regard to multiplicity, the three different training datasets have
no significant differences. This may be due to the definition of the property.
The multiplicity property relates a model fragment and a model, determining
how many times the model fragment appears in the model. In contrast, both
the density property and the dispersion property involve not only the model
fragment and model, but also the elements of the model fragment. The density
property determines the relation between the number of elements in the model
fragment with number of elements in the model. The dispersion determines
the number of elements in the model fragment that are connected with each
other. Therefore, since the multiplicity property does not involve the content
(elements) of the model fragment, the multiplicity property may not help to
differentiate a model fragment from another one. For this reason, this property
may not be significant.

With regard to dispersion, the model fragments with extra-small and
small dispersion values achieve results with up to 53% more precision, 52% more
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recall, 52% more F-measure, and 0.57 more MCC than the model fragments
with other dispersion values. Although the relation between the results is not
as clear as in the case of the density property, it seems that the stronger the
connection between the elements of a model fragment the easier it is to find
that model fragment. In fact, four different training datasets (Dispersion-XS,
Dispersion-S, Dispersion-L, and Dispersion-A) achieve good results when the
approved features are strongly connected, so the approved features have values
between 0 and 0.25. The same behavior is shown for the rest of the results: the
less connected that the elements of the desired model fragment are, the better
the results for the training datasets that contain small or extra-small dispersion
values. Therefore, it may be a relation between the connected elements in a
model fragment and the facility to locate the model fragment. However, future
research about dispersion can help to clarify this relation.

6. Threats to Validity

In this section, we use the classification of threats to validity of [33] to
acknowledge the limitations of our experiment.

Construct validity: This aspect of validity reflects the extent to which the
operational measures that are studied represent what the researchers have
in mind. To minimize this risk, our evaluation is performed using four
measures: precision, recall, F-measure, and MCC. These measures are
widely accepted in the software engineering research community.

Internal Validity: This aspect of validity is of concern when causal relations
are examined. There is a risk that the factor being investigated may be
affected by other neglected factors. To reduce this threat, the knowledge
base of our case study is big enough to be sampled into training datasets for
all of the properties: density, multiplicity, and dispersion. Therefore, the
training datasets are not affected negatively because they are imbalanced.
Moreover, all of the training datasets contain a similar number of triplets
(about 1600), so that all of the training datasets are compared taking into
account the same conditions. Furthermore, RankBoost tends to overfit
when the training dataset is not large enough and there are many encoding
characteristics [34]. However, this threat has been reduced because the
number of triplets in our training dataset is not small in comparison to
the training sets in other works [9]. Moreover, our approach uses only
54 encoding characteristics, which is a small number in machine learning
applications [35, 36].

External Validity: This aspect of validity is concerned with to what extent it
is possible to generalize the findings and to what extent the findings are
of relevance for other cases. We reduced this threat by using standards
that are frequently leveraged to specify all kinds of different software (e.g.,
MOF). Moreover, our experiment does not rely on the specific conditions
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of our domain feature descriptions and models. However, the evaluation
is limited to a single case study and a single machine learning technique.
Therefore, the experiment and its results should be replicated in other
domains and using other machine learning techniques before assuring their
generalization.

Reliability: This aspect is concerned with to what extent the data and the
analysis are dependent on the specific researchers. To reduce this threat,
most of the inputs were provided by our industrial partner and the ana-
lyzed properties were selected from [8]. With regard to the inputs, the only
inputs that were not provided by our industrial partner were the training
datasets. These training datasets were specifically created by selecting
triplets of the knowledge base provided by our industrial partner. More-
over, to prevent the researchers from influencing the results by looking for
a specific outcome, all of the test cases were evaluated for all of the training
datasets; none of the test cases were removed for any reason whatsoever.
With regard to the analyzed properties, the evaluation is limited to three
properties. These properties were proposed in [8] precisely because the
researchers were not considering any property to report model fragments.
However, we acknowledge that there could be other properties that may
influence the results (e.g., the properties of the feature description), so the
results of our evaluation are limited by these properties.

7. Related Work

Table 13 summarizes the related works that report their training datasets in
order to be able to replicate the results they have obtained in their experiments.
Specifically, Table 13 presents the related works that are not only related to
feature location, but also to bug location and traceability links recovery, where
model fragment location is fundamental. In Table 13, we highlight which prop-
erties (size, score distribution, density, multiplicity, dispersion) are taken into
account as well as showing which software artifacts are considered in each work
(source code or models). The

√
indicates that a specific property is considered.

The X indicates that a specific property is not considered. The - indicates that
a specific property does not exist for this artifact. Furthermore, the last column
of the table shows which works are evaluated in an industrial scenario.

Some existing works focus on machine learning for feature location. For
instance, Corley et al. [2] explore the use of deep learning applied to fea-
ture location by the usage of document vectors. The authors in [37] propose
a research method comprised of two experiments to evaluate five information
retrieval methods targeting the extraction of feature-code trace links. Binkley
et al. [6] further illustrate the benefits of using the learning to rank technique in
both feature location and traceability by applying learning to rank algorithms
to improve several feature models for software maintenance. Marcén et al. [5]
presented a feature location approach that targets model fragments as the fea-
ture realization artifacts using learning to rank. All of these works propose new
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Table 13: Overview of related work regarding the industrial evaluation and the properties
of the knowledge base: size, score distribution (SD), density (DE), multiplicity (MU), and
dispersion (DI).

Related

Works

Software

Artifact

Properties Industrial

EvaluationSize SD DE MU DI

Feature

Location

[2] Source code
√

X - - - X

[37] Source code X X - - - X

[6] Source code
√

X X X X X

[5] Models
√ √

X X X
√

Bug

Location

[3] Source code
√

X - - - X

[4] Source code X X - - - X

[38] Source code
√

X - - - X

[39] Source code
√ √

- - - X

Traceability

Links

Recovery

[6] Source code
√

X X X X X

[40]
Source code

and Models

√ √
X X X X

[7]
Source code

and Models

√ √
X X X X

[41] Models
√

X X X X X

[42] Models
√

X X X X X

[21] Models
√ √

X X X
√

Our work Models
√ √ √ √ √ √

approaches that use machine learning technique for feature location, reporting
algorithms, and how to tune them. Our work focuses on reporting the impor-
tance of the model fragment properties when we are training the classifier from
a training dataset with model fragments.

Several research studies apply machine learning approaches to bug location.
For instance, Tien-Duy et al. [3] focus on learning to rank through feature
vectors that are based on likely invariants. Ye et al. [4] propose a learning
to rank approach for information retrieval (IR) based bug localization using
features extracted from textual bug reports and source code files. In [38], eight
learning to rank techniques in bug localization are compared. The features are
selected from previous hybrid bug localization studies, and the feature weight
values in learning to rank techniques are learned from historical bug data and
source code information. Zhao et al. [39] defined three effort-aware metrics,
which are all based on lines of code, to examine the actual performance of
learning to rank bug localization and claimed that the learning to rank method
is similar or even worse than the standard vector support machine (VSM). All
of these work focus on locating bugs by machine learning at the code level in
contrast to our work, which focuses on the model level.

Recent years have seen an increasing interest in traceability-based machine
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learning approaches. Binkley et al. [6] further illustrate the benefits of using
the learning to rank technique in the context of traceability by applying learn-
ing to rank algorithms to improve several feature models for software mainte-
nance. In [40], the authors used machine learning classifiers to estimate the
number of valid links remaining in a set of candidate links returned by IR tech-
niques. Sherba et al. [41] proposed an approach, TraceM, based on a technique
from open-hypermedia and information integration. TraceM manages traceabil-
ity links between requirements and architecture. TraceM enables the creation,
maintenance, and viewing of traceability relationships in tools that software
professionals use on a daily basis. In [42], the author proposes a tool for man-
aging system requirements, system architectures, and the traceability between
them. The tool involves an underlying information model that captures the key
concepts and relationships of requirements engineering and architecture design.
More recently, in [21], the authors propose an evolutionary ontological encoding
approach to enable machine learning techniques to be used to perform Software
Engineering tasks in models. Furthermore, Mills et al. [7] propose TRAIL, a
technique for automating traceability maintenance by considering traceability
link recovery as a binary classification problem. They address this problem us-
ing machine learning algorithms trained on historical traceability information.
In contrast, our work has been evaluated in an industrial domain with software
product line engineers suggesting feature properties to be considered during
classifier training.

In summary, our work differs from the previous ones in four aspects: 1) we
do not propose a new approach, but rather we focus on assessing the impact of
feature properties in the training of the classifier; 2) we evaluate our work in an
industrial domain; 3) we focus our efforts in a model-based approach; and 4) we
are the only ones who have carefully evaluated the impact of feature properties
during classifier training on the quality of the results.

8. Conclusions

Feature location on models involves specific properties, which may not be
relevant in other domains. Although most of the works report the machine
learning techniques, the tuning parameters, and the size and score distribution
of the training datasets, they do not discuss the model fragment properties.
In models, the training datasets contain model fragments, whose properties
(density, multiplicity, and dispersion) may or may not influence the feature
location results. Therefore, since model fragments form part of the training
datasets, they should be properly reported in case they have an impact on the
feature location results.

In this paper, we have analyzed the influence of three model fragment prop-
erties: density, multiplicity and dispersion. After the evaluation in an industrial
case study, our results show that the density and dispersion properties signif-
icantly influence the results. In contrast, the multiplicity property does not
influence the results regardless of the multiplicity values of the model frag-
ments. According to the results, when the training dataset of our case study is
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reported, we would have to describe its model fragments regarding the density
and dispersion properties. Likewise, works on machine learning-based feature
location on models should also analyze the influence of model fragment prop-
erties on their case studies not only to properly report but also to be able to
compare the approaches fairly and thus improve the feature location results of
their case studies.

The promising results of this work lead to interesting research questions for
the future, such as the following: Can the same results be obtained through
another machine learning-based approach? ; Do we need other training datasets
for a different machine learning technique? ; Is an analysis of the model fragment
properties worth doing for any case study? ; or Are there more properties in the
content of a training dataset that can influence the results? Therefore, in order
to answer some of these research questions and to test the external validity of
the results of this work, the next steps are clear: 1) other machine learning
techniques must be applied; and 2) other case studies must be tested in other
domains.
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Appendix A. Histograms for training datasets

Figure A.10: Histograms of the properties (Score, Density, Multiplicity, and Dispersion) in
the training datasets (Density-XS, Density-S, and Density-M) related to RQ1.
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Figure A.11: Histograms of the properties (Score, Density, Multiplicity, and Dispersion) in
the training datasets (Multiplicty=1, Multiplicity>1, and Multiplicity-A) related to RQ2.
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Figure A.12: Histograms of the properties (Score, Density, Multiplicity, and Dispersion) in the
training datasets (Dispersion-XS, Dispersion-S, Dispersion-M, Dispersion-L, and Dispersion-
A) related to RQ3.
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