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Abstract. Feature location is concerned with identifying software ar-
tifacts associated with a program functionality (features). This paper
presents a novel approach that combines feature location at the model
level with code comparison at the code level to extract Clone-and-Own
Relationships from a family of software products. The aim of our work
is to understand the different Clone-and-Own Relationships and to take
advantage of them in order to improve the way features are reused. We
have evaluated our work by applying our approach to two families of
software products of industrial dimensions. The code of one of the fam-
ilies is implemented manually by software engineers from the models
that specify the software, while the code of the other family is imple-
mented automatically by a code generation tool. The results show that
our approach is able to extract relationships between features such as
Reimplemented, Modificated, Adapted, Unaltered, and Ghost Features,
thus providing insight into understanding the Clone-and-Own relation-
ships of a family of software products. Furthermore, we suggest how to
use these relationships to improve the way features are reused.

Keywords: Feature Location, Software Variability Extraction, Clone-
and-Own Extraction

1 Introduction

Feature location is concerned with identifying software artifacts associated with a
program functionality (features). Feature location is one of the most important
and common activities performed by developers during software maintenance
and evolution [1]. Most of the approaches carry out feature location at the code
level [1],[2],[3], but in recent years feature location at the model level is gaining
momentum [4],[5],[6].

This paper presents the first approach that combines the recent techniques
on feature location at the model level with code comparison at the code level.

? This work has been partially supported by the Ministry of Economy and Competi-
tiveness (MINECO), through the Spanish National R+D+i Plan and ERDF funds
under The project Model-Driven Variability Extraction for Software Product Lines
Adoption (TIN2015-64397-R).



We combine both to extract Clone-and-Own Relationships from a family of
software products where the software has been specified through models, and
implemented either in a manual or in an automatic way. The extracted Clone-
and-Own Relationships reflect how features have been reused throughout the
development of the family of software products.

In order to combine both techniques, we used the information that the tech-
niques on feature location provide to develop an algorithm that isolates features
at the model level. Then, our approach uses that information to guide code
comparisons at the code level. This enables us to isolate features at the code
level and retrieve their source code. Finally, we make one-to-one comparisons of
the source code of a feature isolated in a product with the source codes of the
different isolations of the same feature in other products.

We have evaluated our approach in the industrial domain of Induction Hobs
(IH) over two families of IH products. On one of them, the firmware code of
the products was implemented manually from the models. On the other, the
firmware code of the products was implemented in an automatic way.

The results show that it has been possible to identify several different Clone-
and-Own Relationships between features such as Reimplemented, Modified,Adap-
ted, Unaltered, and Ghost Features. These relationships are then used to suggest
improvements on how features are reused. In the case of automatic implementa-
tion, extracted relationships are used to analyze whether it is necessary to carry
out changes over the model-to-code transformation. In the case of manual im-
plementation, extracted relationships are used to detect reuse impediments, to
analyze cost-benefit and to detect opportunities to improve the reuse maturity.

The rest of the paper is structured as follows: Section 2 presents our approach
and shows how to apply our approach to a simple example. Section 3 shows the
evaluation of our work. Section 4 comprehends the work related to this paper.
Section 5 summarizes the conclusions of our work.

2 Clone-and-Own Extraction Approach

The aim of our approach is to extract Clone-and-Own Relationships that enable
us to understand and improve how features are reused among the products. The
input of our approach is a family of software products where the software has
been specified through models. The models are translated into code by humans
or in an automatic way using a model-to-text transformation [7]. Our Clone-and-
Own Extraction approach builds up on feature location at the model level and
code comparisons. The main stages of our approach are: Model-based feature
location, Feature Isolation, Code Comparison and Similarity Comparison. Fig.
1 depicts the inputs and outputs of these stages, which are described in the
following subsections.

We use a running example in order to illustrate our approach. The Linked
List Example is based on a family of software products where the variability is
not formalized. The products have associated models, from which the code of the
products has been manually implemented by a human (see left side of Fig. 2).
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Fig. 1. Stages of the Approach

The products are lists, which can be singly or doubly linked lists. Each list has
a different combination of added functionality: sorting functionality (using the
bubble method), functionality that enables calculating the number of elements
of the list, and functionality that prints the elements of the list.

2.1 Model-based Feature Location

The first stage of our approach extracts the features from the products at the
model level by using already existing techniques that identify features given a
set of models. Feature location consists of identifying a fragment in the source
code or software model that corresponds to a specific functionality. It is one of
the most frequent maintenance activities undertaken by developers because it is
a part of the incremental change process [1].

There are several research efforts in existing literature towards feature lo-
cation from a set of models [8], [6], [5]. For this stage we have adopted Con-
ceptualized Model Patterns to feature location (hereinafter CMP-FL) [9], which
identify model patterns by human-in-the-loop (domain experts and application
engineers become part of the decision-making process) and conceptualize the
extracted patterns as reusable model fragments. We have adopted CMP-FL be-
cause the authors show CMP-FL improves the results obtained with previous
approaches, providing features that are more recognizable by the engineers.

In CMP-FL, the elements that differ between the product models are ex-
tracted as alternatives for a feature. The elements that do not have a counterpart
in the rest of the models are extracted as optional features. As a result, the mod-
els will be divided into reusable model fragments. Each of the reusable fragments
will correspond with one of the features of the family of software products. The
output of our first stage is a list for each product, that contains the features of
the product which have been located at the model level by CMP-FL.

The Linked List Example (see 1 Model-based Feature Location of Fig. 2)
tags the products with the located features. In the figure, the products, their
features, and the names associated with the features are shown. In this example,
five features are identified in the product family.

Current techniques used to locate features at the model level [8], [6], [5] [9]
do not provide meaningful names, only synthetic names (F1, F2, etc). We have
decided to add more meaningful names to the features in order to improve un-



1. class Node{ 
2.     int data;   Node next; 
3. }; 
4. class List{ 
5.     Node firstNode;   int size; 
6.     public void printList(){...} 
7.     
8.   public void order(){ 
9.        boolean ordered = false; 
10.        while(!ordered){ 
11.            Node previous = null; Node current = firstNode; 
12.            while(current.next!=null) && 
13.                  current.data<=current.next.data){ 
14.                     previous = current; current = current.next; } 
15.            if(current.next == null){ ordered = true; 
16.            }else if(current.data > current.next.data){ 
17.                Node aux = current.next; 
18.                current.next = aux.next;  aux.next = current; 
19.                if(previous != null) previous.next = aux; 
20.                else firstNode = aux; 
21.            } 
22.        } } 
23. } 
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1. class Node { 
2.     int data; 
3.     Node next; 
4.     Node previous; 
5. }; 
6.  
7.  class List { 
8.     Node firstNode; 
9.     int size; 
10.      
11.   public void size(){...} 
12. } 
 

order size 

1. class Node{ 
2.     int data; 
3. Node next; 
4. Node previous; 
5. }; 
6. class List{ 
7.     Node firstNode; 
8.     int size; 
9.   public void order(){ 
10.        boolean ordered = false; 
11.        while(!ordered){ 
12.             Node current = firstNode; 
13.             while(current.next!=null) && 
14.                   current.data<=current.next.data){ 
15.                      current = current.next; 
16.             } 
17.           if(current.next == null){ ordered = true; 
18.           }else if(current.data > current.next.data){ 
19.           Node aux = current.next; current.next =aux.next; 
20.                 aux.previous = current.previous; 
21.                 if(current.previous != null){ 
22.                     current.previous.next = aux; 
23.                 }else{ 
24.                     firstNode = aux; 
25.                     current.previous = aux; 
26.                 } 
27.                 if(aux.next != null) 
28.                     aux.next.previous = current; 
29.                 aux.next = current; 
30.             } } } 
31. } 

Fig. 2. Clone-and-Own Relationships Extraction applied to the Linked List Example



derstanding of the example: F1, (Forward Linking), F2 (Sorting), F3 (Printing),
F4 (Backwards Linking) and F5 (Measuring).

In the first product (PA), features F1, F2 and F3 have been detected. In the
second product (PB), features F1, F2, and F4 have been detected. Finally, in
the third product (PC), features F1, F4, and F5 have been detected.

Notice that some of the features are present in more than one product. For
instance, F2 is present in both product PA and product PB. In order to avoid
ambiguity in feature names through this example, a feature FN that belongs to
a product PX will be referred to as FN(PX).

2.2 Feature Isolation

This stage performs subtractions between the different products at the model
level to identify the features that can be potentially isolated in code. We devel-
oped an algorithm that performs the second stage. The algorithm’s input is a
list of the existing products and their features. The result of the algorithm is
the list of the features that can be isolated at the model level, accompanied by
one operation per feature which expresses the code subtractions that need to
be carried out between products in order to isolate the mentioned feature. The
implementation of the algorithm is described as follows:

– The algorithm creates an empty list to store the features that it is able to
isolate.

– For each feature (FN) of every product (PX), the algorithm calculates the
Complementary Feature Set (CFS). A CFS is a product, combination of
products, or combination between products plus already isolated features
which contains all the features in PX except for FN. A CFS is valid even if
it contains features that are not present in PX. Subtracting the found CFS
to PX results in isolating FN. The isolation operation becomes FN(PX) =
PX - CFS (e.g.: F1(P7) = P7 - P6 - F3(P4)).

– The isolated features and their isolation operations are added to the list.
The addition of new features to the list of isolated features enables for new
CFS, hence new feature isolations, so we make iterations while new isolated
features are added to the list.

The first iteration of the algorithm will include into the list those features
that can be isolated by a CFS composed only of a product or combination of
products. Isolation operations found in the first iteration constitute the base
cases of our algorithm. Following iterations will use combinations between prod-
ucts plus already isolated features to calculate the CFS. Isolation operations
found this way constitute the recursive cases of our algorithm.

The Linked List Example (see 2 Feature Isolation at model level of Fig. 2)
shows the application of our feature isolation algorithm as follows.

– First Iteration: For all the features in PA, the feature isolation algorithm
searches for the CFS that can isolate them. It is not possible to calculate



the CFS for F1 nor F2, but it is possible to calculate it for F3. Subtracting
PB and PC from PA, we eliminate from PA the code from F1, F2, F4, and
F5. Eliminating F1 and F2 from PA leaves us with F3. We have found the
first isolation operation. Notice that it would be enough to subtract PB from
PA to achieve the same result, but we follow the criteria of eliminating the
maximum possible CFS expression to get a purer result.

The feature isolation algorithm performs the same search in the rest of the
products. In PB, it is possible to isolate its F2 by eliminating F1 and F4
from PC, and it is also possible to isolate its F4 by disposing of F1 and F2
via PA. In PC, we can isolate F5 in a similar fashion as F3 from PA.

At this point, the feature isolation algorithm has gone through all the fea-
tures of the product family, so the iteration ends. In this iteration, the fea-
ture isolation algorithm has calculated the isolation operations for F3(PA),
F2(PB), F4(PB), and F5(PC). As there are still features that lack an isola-
tion operation and we have unlocked new isolation operations, the feature
isolation algorithm makes a new iteration.

– Second Iteration: For all the features in PA that lack an isolation oper-
ation, the feature isolation algorithm searches for the CFS that can isolate
them. In order to isolate F1, we need to eliminate both F2 and F3. In the
first iteration, our algorithm located F2(PB) and F3(PA). They conform the
CFS for F1(PA). We can isolate F2(PA) by subtracting PC and F3(PA).

We can repeat the same steps in both PB and PC. By combining the different
products and the features that we isolated in the first iteration, it is possible
to get all the isolation operations for the features that lacked them in the
previous step (F1(PB), F1(PC), F4(PC)).

The second iteration has calculated the isolation operations for F1(PA),
F2(PA), F1(PB), F1(PC), and F4(PC). At the end of the second iteration,
the feature isolation algorithm has isolated all the features, so no more iter-
ations are needed.

As the output of the Stage 2 of the Linked List Example, three tables are
returned. Each one of these tables contains the product name, the features that
belong to it, and the isolation operations found by the feature isolation algorithm.

2.3 Code Comparison

The third stage runs the code comparisons specified by the operations in order
to isolate the features in the source code of the products. In a family of software
products, the newest products are implemented by carrying out increments or
decrements of the previous products in the family. Version control software has
become really popular, and there is a wide amount of tool support that calculates
differences between two source codes available. Apart from this, code comparison
techniques have been used successfully for large scale systems [10] [11], proving
the computational cost of the operation to be affordable should we scale up our
approach. For all these reasons, we use textual code comparison techniques (diff)



to execute the code comparisons dictated by the operations given by the second
step of our approach.

The Linked List Example (see 3 Code Comparison of Fig. 2) shows how fea-
tures are isolated. In our approach, all the features isolated at the model level in
the second stage are isolated at the code level in the third stage. Due to space
restrictions, this example isolates only two features: F2(PB), and F2(PA). Ac-
cording to the operations, F2(PB) can be automatically isolated by subtracting
the code belonging to PC from PB. In this example, subtracting the code results
in eliminating from PB the inner class Node and the variable declaration section
(PB, lines 1 to 8). Therefore, the approach isolates the Sorting Feature from PB
(PB, lines 9 to 30).

In order to isolate F2(PA), we must first isolate F3(PA). We subtract both
PB and PC to PA, and after eliminating the corresponding code, the approach
isolates the Printing Feature (PA, declaration at line 6). We can now isolate
F2(PA) by removing from PA the code that is common between PA and PC,
and disposing of the F3(PA) code that we just isolated. By doing this, the
approach isolates the Sorting Feature from PA (PA, lines 8 to 22). The third
stage concludes when the features are isolated in code. The output of the third
stage is, for each FN(PX), the code that isolates the feature.

2.4 Similarity Comparison

In this stage, the isolated pieces of code that implement the features that belong
to more than one product are compared one to one in order to calculate the
similarity between them. In order to calculate the similarity between the same
feature in two different products, our approach performs a diff between them.

Diff returns the equal parts and the differences in the code of the two features.
We discard the code differences and retain the parts of the code that are equal
between them. Similarity between features is then measured in terms of the
Total Number of Statements (TNOS) [1], which is a size metric for measuring
code size. TNOS counts the number of statements (e.g. for, if, return, switch,
while) in each method for assessing the entire code size. This size metric is not
dependent on the coding style of programmers, unlike the Lines Of Code metric.

The Linked List Example (see 4 Similarity Comparison of Fig. 2) compares
F2(PB) and F2(PA). From the lines of code present in the figure, it can be
appreciated that the two order methods, while very similar, do not have the
exact same code (notice the marked changes from line 20 to line 28 on PB). It is
reasonable, as PA implements a singly linked list and PB implements a doubly
linked list. Even if the sorting technique is the same (bubble sort), it cannot be
implemented the same way with a different number of links between elements. In
fact, F2(PA) has 6 statements and F2(PB) has 7 statements. Considering that
4 of the 7 statements are equal and represent the same conditions in the code,
the similarity percentage between F2(PA) and F2(PB) is around the 57%. From
this example, we can conclude that some sort of modification has occurred to
the feature since it was first implemented on PA until its appearance on PB.



Summarizing, our approach is applied to a family of software products where
variability is not formalized. The first stage identifies the features from the prod-
ucts at a model level, tagging the products with them. Then, in the second stage,
the operations to isolate the features are calculated. After that, in the third stage,
the approach executes the code comparisons dictated by the operations. Finally,
in the fourth stage, the approach quantifies the degree of similarity between the
features that appear in more than one product. Our approach returns, for the
different features in the family, the feature isolation at the code level and the
degree of similarity between the features that appear in more than one product.

3 Evaluation

We have evaluated the presented ideas with our industrial partner (BSH group).
Their induction division has been producing induction hobs (under the brands
Bosch and Siemens among others) over the last 15 years.

3.1 The Induction Hobs Domain

The newest Induction Hobs (IHs) include full cooking surfaces, where dynamic
heating areas are automatically calculated and activated or deactivated depend-
ing on the shape, size, and position of the cookware placed on top. In addition,
there has been an increase in the type of feedback provided to the user while
cooking, such as the exact temperature of the cookware, the temperature of the
food being cooked, or even real-time measurements of the actual consumption
of the IH. All of these changes are being possible at the cost of increasing the
software complexity.

Fig. 3. IHDSL Metamodel, Syntax and Model

The Domain Specific Language used by our industrial partner to specify the
Induction Hobs (IHDSL) is composed of 46 meta-classes, 74 references among
them and more than 180 properties. However, in order to gain legibility and due
to intellectual property rights concerns, in this paper we use a simplified subset
of the IHDSL (see Fig. 3). The main concepts of IHDSL are: Inverter, Induction
Hob, Inductor, Provider Channel, Power Manager and Consumer Channel. The
firmware code of each IH is implemented in ANSI C and includes about four
hundred thousand TNOS.



In order to gain legibility and due to intellectual property rights concerns,
in the following lines, we explain a subset of IHDSL to present the IH domain,
although in the evaluation, the complete models have been used. The main
concepts of IHDSL are: Inverter, Induction Hob, Inductor, Provider Channel,
Power Manager and Consumer Channel.

Inverters are in charge of converting the input electric supply to match the
specific requirements of the Induction Hob. Specifically, the amplitude and fre-
quency of the electric supply needs to be precisely modulated in order to improve
the efficiency of the IH and to avoid resonance. Then, the energy is transferred
to the hotplates through the channels. There can be several alternative channels,
which enable different heating strategies depending on the cookware placed on
top of the IH at run-time. The path followed by the energy through the channels
is controlled by the power manager.

Inductors are the elements where the energy is transformed into an electro-
magnetic field. Inductors are composed of a conductor that is usually wound
into a coil. However, inductors vary in their shape and size, resulting in different
power supply needs in order to achieve performance peaks. Inductors can be
organized into groups in order to heat larger cookware while sharing the user
interface controllers. Each group of inductors can have different particularities;
for instance, some of them can be divided into independent zones while others
can grow in size adapting to the size of the cookware being placed on top of
them. Some of the groups of inductors are made at design time, while others can
form at run-time (depending on the cookware placed on top).

3.2 Extracted Clone-and-Own Relationships

We have applied our Clone-and-Own approach to two families of products of our
industrial partner. The first family of products was specified using IHDSL. After
the specification, the IH’s firmware was manually implemented (MI) in ANSI C
by software engineers. This family of products contains a total of 46 products.
Since this family of products uses IHDSL and manual implementation we refer
to this family as IHDSL+MI. The second family of products was also specified
using IHDSL. After the specification, the IH’s firmware was automatically im-
plemented (AI) using m2t (model-to-text) transformation. This transformation
was produced by Acceleo [12]. This family is composed by a total of 66 prod-
ucts. Since this family of products uses IHDSL and automatic implementation
we refer to this family as IHDSL+AI.

The IHDSL+MI family has a total of 81 different features. On the other side,
the IHDSL+AI family contains a total of 47 features. After applying our Clone-
and-Own Relationship extraction approach to both families of products we were
able to isolate a total of 49 features belonging to IHDSL+MI and a total of 34
features belonging to IHDSL+AI. As a result, we detected five types of Clone-
and-Own Relationships. Given the extracted code of FN(PX) and FN(PY), being
product (PX) previous in time to product (PY), and being the same feature (FN)
present in both products, we have identified the following feature relationships
(see top part of Fig. 4).
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Fig. 4. Clone-and-own Relationships Extraction applied to both family of products

– Reimplemented Feature, FN(PX) and FN(PY) do not share code be-
tween them. The implementations of these features are entirely different.

– Modified Feature, it exists shared code between both features. The part
of code from FN(PX) which is present in FN(PY) is referred to as Legacy.
The differences between FN(PX) and the Legacy are referred to as Negative
modifications. The differences between FN(PY) and the Legacy are referred
to as Positive modifications.

– Adapted Feature, FN(PY) includes all code from FN(PX), and additional
code which is not present in FN(PX). The part of FN(PX) is referred to as
Legacy. Adapter represents the difference between FN(PY) and the Legacy.

– Unaltered Feature, the code of FN(PX) and FN(PY) is strictly the same.
– Ghost Feature, FN(PY) is specified at the model level but the extraction

approach reveals that the code is missing.

We have the intuition that another type of relationship exists, Non-documented
Features. Non-documented Features are those features that are not present at
the model level, but they are at the code level. Software engineers reported
that sometimes they implemented new code in later stages of the development
without updating the corresponding IHDSL models. However, the full set of fea-
tures of neither software family was completely isolated. The unclassified code
may belong to either Non-isolated Features or Non-documented Features. There-
fore, we have not evidence that this feature genuinely exists in IHDSL+MI or
IHDSL+AI.

3.3 Clone-and-Own Relationships for Automatic Implementation

In the IHDSL+AI family our approach extracted the following relationships: 0%
Reimplemented, 8% Modified, 11% Adapted, 81% Unaltered and 0% Ghost. The



presence of Modified and Adapted Features reveals that the implementation code
of those features was refined (Modified Feature) or extended (Adapted Feature)
by hand after the execution of the m2t transformation. Each feature classified as
Unaltered Feature exhibits the same implementation code across all the members
of the family that implement that particular feature. Unaltered Features suggest
that the code of those features was not altered by software engineers after the
execution of the m2t transformation.

In IHDSL+AI, the presence of Unaltered Features (81%) surpasses the pres-
ence of both Modified and Adapted Features (19%). This indicates that the m2t
transformation actually saves implementation time to software engineers. Fur-
thermore, the size of Positive modifications is smaller than the size of the Legacy
feature on average (Modified Features) and the size of the Adapter is smaller than
the Legacy feature on average (Adapted Features). These evidence contributes
to concluding that the m2t transformation requires little human intervention.

We suggest that the Modified Feature and Adapted Feature relationships are
useful to analyze whether it is necessary to carry out changes over the model-
to-code transformation. If it is determined that it is necessary to update it, then
the information provided by the occurrences of these relationships can be used
to refine the metamodel and the code transformation rules.

In the IHDSL+AI family, modified features enabled to adjust the transfor-
mation rules. Negative parts of modified features reflected eliminated code intro-
duced by obsolete transformation rules, and positive parts of modified features
reflected manual code additions. The information provided by analyzing both
the negative and positive parts enabled the company to update transformation
rules with recurring changes that were predicted to keep occurring in the future.

3.4 Clone-and-Own Relationships for Manual Implementation

In the IHDSL+MI family our approach extracted the following relationships:
3% Reimplemented, 52% Modified, 23% Adapted, 16% Unaltered and 6% Ghost.
The presence of Modified and Adapted Features reveals that the implementation
code was reused from another product as source and then refined to meet the
particularities of the target product. F2(PA) and F2(PB) of the Linked List
example (see Fig. 2) are instances of the Modified Feature relationship. On one
hand, both F2(PA) and F2(PB) implement the same functionality (sorting the
lists using the bubble method). On the other hand the implementation details
of F2(PA) are different than those of F2(PB) to accommodate a feature (F4 =
Backwards Linking) of PB which is not a feature of PA.

Unaltered Features were copied from previous products and used directly
in new products. It turns out, Unaltered Features are reused among different
products without requiring refinements on part of the engineer to accommodate
the rest of the features of the product.

In IHDSL+MI, Unaltered, Adapted and Modified Features (91%) reveal reuse
opportunities identified by the software engineers. The presence of Reimple-
mented Features (3%) indicates that software engineers did not realize former
implementations of the feature. The implementation of these features was done



from scratch, revealing missed reuse opportunities. Finally 6% of isolated fea-
tures were cataloged as Ghost Features. Ghost Features reveal inconsistencies
between the model specification and the implemented code. The model specifi-
cation should be updated to keep software engineers from failing to locate the
code of those features.

We suggest that Reimplemented Feature relationships are useful to detect
feature reuse impediments. In IHDSL+MI, for instance, they were useful to
detect that a developer had left the company without performing knowledge
transfer, and that the new developer in his place eventually reimplemented some
code from scratch. Apart from detecting the situation, now we have awareness
of both implementations, therefore widening the reuse possibilities.

We propose that Modified Feature and Adapted Feature relationships are
useful for analyzing cost-benefit payoffs of reusing code fragments against reim-
plementing them. In IHDSL+MI, for instance, 12 cases were found where it had
become more costly to create adapters that allowed reusing the legacy part of a
feature than to reimplement the feature as needed.

We propound that Unaltered Feature relationships are useful to detect the
opportunities to improve the reuse maturity of a family of software products. In
IHDSL+MI, for instance, they were useful to build an implementation framework
that has been used in further developments.

3.5 Limitations

There are some limitations that must be acknowledged. To begin with, there
are companies that implement the code directly from the software requirements.
This leads to software product families implemented without models. In such an
scenario, our approach is not applicable. Developing and using techniques that
permit to carry out feature location at the requisites level would widen the scope
of our approach.

Second, depending on the configuration of the products in the software fam-
ily, it is possible for our feature isolation algorithm to not find the isolation
operations for every feature in every product. In the future, our approach might
suggest the addition of products to the family with specific feature configurations
that would allow the algorithm to isolate non-isolated features.

In addition, determining the kind of Clone-and-Own Relationships between
products entails some degree of uncertainty. Specifically in the cases of reim-
plementation and feature modification, the current criteria is very rigid. This
results in reimplemented features that, due to having low amounts of common
code, are incorrectly classified as modified ones.

Finally, inspecting the isolated features with domain experts, we detected
that in some cases, not all the lines of code provided in an isolated piece of
code belong to the isolated feature and, in some other cases, some lines that
do belong to the isolated feature are missing. Nevertheless, we have confirmed
that the isolated code is a good heuristic for feature location, and domain ex-
perts have validated that the behavior detected by the described Clone-and-Own
Relationships is the right one at the code level.



4 Related Work

Approaches related to the one presented in this paper can be distinguished into
two areas: feature location at the model level and feature location at the code
level. First we introduce the state-of-the-art of feature location at the code level
and secondly, the state-of-the-art of feature location at the model level.

4.1 Feature Location at the Code Level

Some works apply type systems to extract relevant information when construct-
ing the variability model. For instance, Typechef [13] provides an infrastructure
to analyze the variability with the #ifdef directives. In [14] the authors extend
Typechef in order to support the variability at run-time.

Text similarity techniques are based on mathematical methods to determine
the similarity in a collection of texts. As an example, Latent Semantic Indexing
(LSI) [15] takes into account the number of occurrences in a set of words in large
texts. LSI can be used to obtain similarity measurement metrics between features
and the code used to implement them. These similarity can be represented by
Vector Space Models (VSM). On some occasions text similarity techniques are
combined with dynamic analysis [16].

Other works focus on applying reverse engineering to the source code to ob-
tain the variability model [3], [17]. In [3] the authors use propositional logic which
describes the dependencies between features. In [18] Typechef and propositional
logic are used to extract conditions among a collection of features.

Several approaches [19], [20] apply Program Dependence Analysis (PDA) to
locate features. PDA can be represented by Program Dependence Graphs (PDG)
where the nodes represent functions or global variables and the edges represent
function calls or accesses to global variables.

Trace analysis is a run-time technique used to define a variability model
through relevant information. When the technique is executed, it produces traces
indicating which parts of code have been executed. Some approaches [21] are
based on traces analysis. There are also works that combine dynamic analysis
and static analysis as is the case of LSI [22], PDA [21] or VSM [2].

Compared to the above works, our approach introduces software models as a
new source of knowledge for feature location at the code level. Furthermore, our
approach not only isolates the implemented code of the features but it also ex-
tracts Clone-and-Own Relationships among these features. These relationships
are used to better understand how features are reused, and to suggest improve-
ments on the way they are reused.

4.2 Feature Location at the Model Level

In [5], the authors propose a framework for mining legacy product lines and au-
tomating their refactoring to contemporary feature-oriented SPLE approaches.
They compare the elements of the input with each other, matching those whose



similarity is above a certain threshold and merging them together. In [8], the au-
thors propose a generic approach to automatically compare products and extract
the variability among them in terms of Common Variability Language (CVL)
[23], [24]. In [9] an approach to automate the formalization of variability in a
given family of models is presented. The model commonalities and differences
are specified as placements over a base model and replacements in a model li-
brary. The resulting Software Product Line (SPL) enables the derivation of new
product models by reusing the extracted model fragments. In [6] the authors
propose another approach based on comparisons to extract the variability of
any kind of asset. These works focus on formalizing the variability in a SPL.
Finally, [4] identifies model patterns in a set of models and conceptualizes the
extracted patterns as reusable model fragments.

The above approaches limit their application to finding fragments of a model
which represent features in order to formalize the variability in a SPL. In con-
trast, our approach combines feature location at the model level with code com-
parison in order to isolate the implemented code of the features. Furthermore,
our work identifies several different Clone-and-Own Relationships among the lo-
cated features. These relationships enable us to make improvement suggestions
based on the knowledge gathered on the way features are reused.

5 Conclusions

To keep pace with the increasing demand for custom-tailored software systems,
companies often apply the clone-and-own practice, through which a new product
in a software product family is built by copying and adapting code from other
products in the family.

In this work, we show our approach, which leverages feature location to
identify and extract the Clone-and-Own Relationships from a family of software
products. We have proposed an approach that extracts the features at the model
level and, with that information, calculates isolation operations that enable to
isolate the features at the code level. This work allows us to isolate the features
of the different products in the code. With the achieved code isolation, features
are compared at the code level in order to define the relationships between them.

We have evaluated the approach with our industrial partner, extracting the
Clone-and-Own Relationships presented in two product families of induction hob
models. One of the families had its code implemented manually and the other
one, in an automatic way.

A total of five different relationships have been extracted. These relationships
entitle Reimplemented, Modified, Adapted, Unaltered, and Ghost Features. The
results of our approach provide insight into understanding the Clone-and-Own
relationships of the features in a family of software products. These relationships
are then used to suggest improvements on how features are reused.

In the case of families where automatic code generation is applied, the Mod-
ified and Adapted Features are used to analyze whether it is necessary to carry
out changes over the model-to-code transformation. If it is determined that it



is necessary to improve it, then the information provided by the occurrences of
these relationships can be used to refine the metamodel and the code transfor-
mation rules.

In the case of families where the code is manually implemented, Reimple-
mented Features are used to detect feature reuse impediments; Modified and
Adapted Features are used for analyzing cost-benefit payoffs of reusing code frag-
ments against reimplementing them; and Unaltered Features are used to detect
opportunities to improve the reuse maturity of a family of software products.
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13. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.:
Variability-aware parsing in the presence of lexical macros and conditional com-
pilation. In Lopes, C.V., Fisher, K., eds.: Proceedings of the 26th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2011, ACM (2011)

14. Kästner, C., Ostermann, K., Erdweg, S.: A variability-aware module system. In
Leavens, G.T., Dwyer, M.B., eds.: Proceedings of the 27th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, USA,
October 21-25, 2012, ACM (2012)

15. Landauer, T.K., Psotka, J.: Simulating Text Understanding for Educational Appli-
cations with Latent Semantic Analysis: Introduction to LSA. Interactive Learning
Environments (2000)

16. Asadi, F., Penta, M.D., Antoniol, G., Guéhéneuc, Y.G.: A Heuristic-Based Ap-
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