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Abstract Bug Localization is a common task in Software Engineering, especially
when maintaining and evolving software products. This paper introduces a Bug
Localization approach that, in contrast to existing source-code approaches, takes
advantage of domain information found in the model and the metamodel. Through-
out this paper, we present an approach for bug localization in models (BLiM2)
that applies the source code ideas for bug localization (textual similarity to the
bug description and the Defect Localization Principle) and takes advantage of the
domain information from the model and the metamodel. We evaluated our ap-
proach in BSH, a real-world industrial case study in the induction hob domain
measuring the results in terms of recall, precision, the combination of both the F-
measure and the Matthews Correlation Coefficient (MCC). Our study shows that
our BLiM2 approach, which combines information from the model and the meta-
model for the textual similarity and differentiates between the timespan from the
model and metamodel, provides the best results in this work. We also performed
a statistical analysis to provide evidence of the significance of the results. The
values obtained shows that exist significant differences in the performance of the
best BLiM2 approach with the approach used by our industrial partner. Finally,
the effect size statistics reveals that the best BLiM2 approach obtain better results
in the 78% of the times in the worst case.
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1 Introduction

Nowadays, software exists in almost everything. This trend has been accompanied
by a high increase in the scale and the complexity of software. Unfortunately,
this is also accompanied by more software bugs. Hence, software maintenance is
becoming increasingly important. Lehman et al. [33] pointed out that up to 80% of
the lifetime of a system is spent on maintenance and evolution activities. Software
maintainers spend from 50% up to almost 90% of their time trying to understand
a program in order to make changes correctly.

Bug Localization is one of the most important and common activities per-
formed by developers during software maintenance and evolution. Bug Localiza-
tion aims to identify the location in the artifact that is pertinent to a software
fault. A recent survey [61] reveals that none of the Bug Localization approaches
take into account models as the source of the bugs. In the model paradigm, mod-
els can play several roles in software development: diagrams for analysis, can be
reverse-engineered from source code, or can be used for code generation. In this
work, we focus on models for code generation. When models are used for code
generation, addressing bugs at the model level must not be neglected.

In the case of Bug Localization in source code, approaches are based mainly
on information retrieval [51,65]. Some works [62,55] also take into account the
Defect Localization Principle. This principle is based on the observation that the
most recent modifications to a project are most likely the cause of future bugs [23,
66]. Taking into account recent modification may lead to finding relevant locations
that are the cause of a bug [55].

In this paper, we propose an approach for Bug Localization in Models. This ap-
proach enables us to evaluate to what extent the ideas that have been successfully
applied in source code for bug localization (textual similarity to the bug descrip-
tion and the Defect Localization Principle) also work for models. Our approach
takes into account a property of the models that is not present in source code,
namely, the domain information embedded in models and metamodels.

In our approach, information retrieval is used to measure the similarity of
model fragments with the description of the bug report that we want to locate.
Model fragments are formed by model elements, and each model element has
an associated modification time. The Defect Localization Principle is measured
through the timespan weighting that assesses the model fragment solutions using
the timespan of the model modifications.

We materialize our Bug Localization approach as a Multi-Objective Evolution-
ary Algorithm that uses both the similarity to the bug report and the timespan
weighting as fitness functions. Our approach is, in fact, a family of approaches.
We can change from one of our approach to another by changing how we use the
information of the models and the metamodels with which we measure the sim-
ilarity and the timespan. As a result, software engineers obtain a ranked list of
model fragments from the model, which is intended to identify the parts of the
model that are relevant to the bug.

We have applied our approach to the product models from BSH, one of the
largest manufacturers of home appliances in Europe. Its induction division has
been producing induction hobs under the brands of Bosch and Siemens for the last
15 years. The firmware that controls the induction hobs is specified by means of a
Domain Specific Language (IHDSL). The different configurations of the induction
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hobs are managed following a model-based Software Product Line (SPL) approach
that uses Common Variability Language (CVL) [24] to configure their models. The
firmware of their products is generated from the IHDSL models.

In our evaluation, we compare our Bug Localization approach, which uses
model and metamodel information (BLiM2), with a baseline approach. The base-
line approach is used by BSH for bug localization. We apply both the BLiM2
approach and the baseline to the product family of BSH. They provided us with
documentation about bugs. For each one of the bugs, the documentation provided
a bug description and the localization of the bug. Taking the bug descriptions
and the product family as input, we measure the results using the standard mea-
surements accepted by the software engineering community: recall, precision, the
combination of both the F-measure, and the Matthews Correlation Coefficient
(MCC) [52,40] using the location of the bugs as oracle.

The variant BLiM2-3OT of our approach achieves the best results. It has three
objectives in the fitness function: one that combines information from the model
and the metamodel for text similarity; one that takes into account the modification
timespan of the model; and one that takes into account the modification timespan
of the metamodel. The results in terms of recall, precision, and MCC, on average
are 90.30%, 79.66%, and 0.83, respectively. Finally, we perform a statistical anal-
ysis on the results in order to provide quantitative evidence of the impact of both
the BLiM2 approach and the baseline approach and to show that this impact is
significant.

The remainder of the paper is structured as follows. In Section 2, we present
the Domain Specific Language used by our industrial partner and the differences
between feature localization and bug localization. In Section 3, we describe our
BLiM2 approach. In Section 4, we evaluate the application of our approach in
BSH. In Section 5, we examine the related work of the area. Finally, we present
our conclusions in Section 6.

2 Background

The running example and the evaluation in this paper are performed using the
products of our industrial partner, BSH. In this section, we present the Domain
Specific Language (DSL) that is used by BSH to formalize their products, which is
called IHDSL. The Common Variability Language (CVL) is also presented. CVL
is the language used by our approach to formalize the model fragments.

The newest Induction Hobs (IHs) feature full cooking surfaces, where dynamic
heating areas are automatically generated and activated or deactivated depending
on the shape, size, and position of the cookware placed on the top. In addition,
there has been an increase in the type of feedback provided to the user while
cooking. All of these changes have been made possible at the expense of increasing
the complexity of the software behind IHs.

The Domain Specific Language used by our industrial partner to specify the
Induction Hobs (IHDSL) is composed of 46 meta-classes, 47 references among
them, and more than 180 properties. To gain legibility and due to intellectual
property right concerns, in this section, we show a simplified subset of the IHDSL
(see Fig. 1, IHDSL Metamodel and IHDSL Syntax). However, the evaluation was
performed using the full IHDSL that is used in BSH.
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IHDSL syntax

Fig. 1 IHDSL Metamodel

Inverters are in charge of transforming the input electric supply to match the
specific requirements of the IH. Then, the energy is transferred to the inductors
through the channels. There can be several alternative channels, which enable
different heating strategies depending on the cookware placed on top of the IH at
run-time. The path followed by the energy through the channels is controlled by
the power manager. Inductors are the elements where the energy is transformed
into an electromagnetic field.

The Product Model in Fig. 2 depicts an example of a product model that is
specified with the IHDSL. The product model contains four inverters that are
used to power two different inductors. The upper inductor is powered by a single
inverter while the lower inductor is powered by the combination of three different
inverters. Power managers acts as hubs to perform the connection between the
inverters and the inductors.

To formalize the solution of our approach as model fragments, we use Common
Variability Language (CVL) [24,56], due to its capabilities to formalize a set of
model elements as a model fragment. The Model Fragment in Fig. 2 shows an
example of a model fragment of the product model (the Product Model in Fig. 2).
The model fragment includes the three inverters (in charge of powering the lower
inductor), the three channels, and the power manager that is used to aggregate and
manage the power provided by those inverters. Then, the solution of our approach
is formalized by means of CVL and showed to the engineers.

In addition, to address the evolution of the metamodel, our industrial partner
uses the Variable MetaModel strategy (VMM) [17]. This strategy has achieved

Product Model Model Fragment

Fig. 2 IHDSL syntax, product model, and model fragment formalization
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Fig. 3 Example of a bug

better results than the migration strategy in domains like that of our industrial
partner, BSH, in terms of indirection, automation, and trust leak.

2.1 Differences between feature and bug localization

In software systems, a feature represents a functionality that is defined by re-
quirements and is accessible to developers and users. Software maintenance and
evolution involves adding new features to programs, improving existing functional-
ities, and removing bugs, which is analogous to removing unwanted functionalities
[15].

Bug localization is a specialization of feature localization. In the end, the soft-
ware engineer obtains a piece of software that is in charge of some functionality
in the system with either of the approaches. However, if we want to perform bug
localization, we must take into account different particularities than if we want to
perform feature localization. For example, the Defect Localization Principle can
be applied to bug localization but not to feature localization.

Our previous approach [19] was developed for feature localization. It uses an
evolutionary algorithm that iterates through the models of the system and assesses
each one of the possible solutions. In the end, the software engineer obtains an
ordered set of model fragments that fits the feature.

In this work, we adapt our feature localization approach [19] to obtain better
solutions in bug localization. We use the same operations to iterate through the
models; however, this approach has a new fitness function. The feature localiza-
tion approach assesses each model fragment regarding textual similarity with the
feature description. In addition to the textual similarity, this approach adds a fit-
ness function that is specific for use with bugs. This fitness function exploits the
timespan since the last modification.

Another difference is that our BLiM2 approach takes into account a property
that is specific to the models. It uses the domain information embedded in the
model and the metamodel. In other words, to assess each model fragment, our
approach takes information from both, model and metamodel (text for measure
textual similarity and timespan for measure the last modification). Nevertheless,
the use of the domain information embedded in the metamodel is not specific for
bug localization, it could be applied to feature localization.

In this way, we convert the generic feature localization approach into a bug
localization approach. This approach is a specialization of our previous feature
localization approach. With our previous feature localization approach, users can
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locate features and bugs. In fact, the software engineers of BSH use our feature
localization approach to locate bugs. The new specific bug localization approach
exploits the timespan dimension of the last modifications, which is only relevant
in bug localization.

3 The BLiM2 Approach

Fig. 3 shows an example of the use of our approach. The product model that
appears on the left of the timeline is modified to make an improvement in the
performance of its inductors. As a result, another product model is generated.
This product model has a new power manager that connects the small inductor
with the rest of the inverters. After some time of use, a bug appears and a bug
report is generated. In the reminder of this paper, the timespan between the change
and the creation of the bug report is called the modification timespan.

We materialize our BLiM2 approach as a Multi-Objective Evolutionary Algo-
rithm that uses both, the similarity to the bug description and the modification
timespan. The use of a multi-objective algorithm allows to show the results of
both objectives (similarity and modification timespan). The effectiveness of each
objective is different for each bug localization. Sometimes the similarity will be
more successful to find the model fragment that contains the bug and sometimes
the timespan is the more successful.

The objective of Bug Localization in Models is to obtain a set of model frag-
ments from a given set of models that may correspond to a specific bug description
being provided by the user of the approach. To do this, the approach receives a
set of models and relies on an evolutionary algorithm that iterates a set of model
fragments and evolves them using genetic operations. The evolutionary algorithm

Gather
Domain Knowledge

Ranking of
Model

Fragments [stop] [not stop]

Fitness

Genetic 
Operations

Select Model
Fragment

Bug
Description

Initialize
PopulationModels 

Bug Description

...The induction hob 
crashes when the user
puts a pot that covers the 
master and slave inductors
and selects the highest
power level ...

Ranked Model Fragments

Bug Realization Similarity Timespan

... ... ...

0.8

0.9

2.646

9.487

Models

Metamodel

Metamodel

Induction
HobInverter

Power 
Manager

Inductor

Provider 
Channel

Consumer
Channel

Fig. 4 Overview of the Bug Localization Approach in Models: BLiM2



Bug Localization in Models 7

is guided by a fitness operation. As output, the approach provides a list of model
fragments that should contain the bug. The overview of the process is shown in
Fig. 4.

The left part of Fig. 4 shows the inputs used in our approach. The input is
composed of a set of models, a metamodel, and a bug description:

– A set of product models that contain the target bug. The software engineer
selects a set of product models from the entire family of products that contain
the bug to be located.

– A metamodel to which the models of the product family conform.
– A bug description of the target bug, using natural language. Typically, these

descriptions come from textual documentation of a bug report. Therefore, the
query will include some domain specific terms that are similar to those used
when specifying the product models. The knowledge of the engineers about
the domain and the product models will be useful for selecting the description
from the bug report.

The right part of Fig. 4 shows the main steps of our approach.

– The initialize population step calculates an initial set of model fragments
from the input set of product models. This initial set of model fragments is
randomly extracted from the product models. This is a common practice in evo-
lutionary computation; as an alternative, seeds (fragments of a model chosen
manually) can be proportionated in order to optimize the population, although
that is out of the scope of this work.

– The genetic operations generate the new generation of model fragments.
First, a selection operation selects the model fragments that will be used as
parents of the new model fragments. The fitness values (see Section 3.2) are
used to ensure that the best model fragments are chosen as parents. Then, a
crossover operation mixes the model elements of the two parents into a new
model fragment. Finally, a mutation operation introduces variations in the new
model fragment (by adding or removing model elements) in hopes that the new
model fragment achieves better fitness values than its parents.

– The fitness step assigns values that assess how good each model fragment is.
The values will take into account the following terms:
– Bug description: The more terms shared between the bug description and

the properties of the model fragment (from the model and the metamodel),
the higher this fitness value.

– Modification timespan: The more recent the modification time, the higher
this fitness value is. The timespan is calculated based on the difference
between the last modification of a model element (in the model or in the
metamodel) and the day on which the bug was discovered (see Fig. 3).

The output of BLiM2 (see Fig. 4) is an ordered set of model fragments that
contains the target bug. The software engineer obtains this set of model fragments,
which is intended to identify the parts of the model that are relevant to the bug.
To do so, the engineer can order the ranking following different criteria depending
on the variant of the approach used, such as the similarity to the bug description,
and the most recent model fragment modifications.

Overall, the aim of the approach is to find the most relevant model fragment
that contains the bug described by the bug report. To do so, the approach performs
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Product Model 2
Model Fragment 1

Parent 1

Product Model 4

Parent 2

Product Model 4
Model Fragment 4

Offspring

Model Fragment 1 (from Parent 1)
+

Product Model 4 (from Parent 2)

Crossover operation

Fig. 5 Crossover Operation

a search guided by a fitness function. This search is done among the different model
fragments (previously obtained applying mutation and crossover operations) that
could contain the bug description. The fitness function will assign values based on
the similarity with the textual description and the most recent model modifications
of that model fragment.

The following sections describe the genetic operations of BLiM2 to generate
new model fragments and how the fitness of each model fragment is determined
in terms of similarity to the bug description, and the time of model modifications.

3.1 Genetic Operations of the BLiM2 Approach

The generation of subsequent model fragment sets is performed by applying genetic
operators that we have adapted to work on model fragments in a previous work
[19]. In other words, new fragments based on the existing ones are generated
through the use of two genetic operators: the crossover operator and the mutation
operator. These two operations are summarized in the following subsections, but
the details are in [19].

3.1.1 Crossover

In our encoding, there are two elements that can be mapped across the different
model fragments: the model fragment and the referenced product model. There-
fore, our crossover operation will take the model fragment from the first parent
and the product model from the second parent, generating a new model fragment
that contains elements from both parents, thus preserving the basic mechanics of
the crossover operation.

To achieve the above, our crossover operation is based on model comparisons.
Fig. 5 shows an example of the application of the crossover operation on model
fragments. First, we select the model fragment from the first parent. Then, we
select the product model from the second parent. The model fragment (from the
first parent) is then compared with the product model (from the second parent).
If the comparison finds the model fragment in the product model, the operation
creates a new model fragment with the model fragment taken from the first parent
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Product Model 4
Model Fragment 4

Offspring

Product Model 4 NEW
Model Fragment
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Model Fragment 4
in

Product Model 4
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Fig. 6 Mutation Operation

but referencing the product model from the second parent. In the case that the
comparison does not find a similar element, the crossover will return the first
parent unchanged.

This operation enables the search space to be expanded to a different product
model, i.e., both model fragments (the one from the first parent and the one
from the new model fragment) will be the same. However, since each of them is
referencing a different product model, they will mutate differently and provide
different model fragments in further generations.

3.1.2 Mutation

Fig. 6 shows an example of our mutation for model fragments. Each model frag-
ment is associated with a product model, and the model fragment mutates in
the context of its associated product model. In other words, the model fragment
will gain or drop some elements, but the resulting model fragment will still be
part of the referenced product model. The mutation possibilities of a given model
fragment are driven by its associated product model.

To perform the mutation, the type of mutation that will occur (either the
addition or removal of elements) is decided randomly:

– Subtractive Mutation: This kind of mutation randomly removes some ele-
ments from the model fragment. The only constraint is that the elements be
selected from the edges of the model fragment (they are connected with a single
element). Therefore, the resulting model fragment is still connected (we can
navigate from any element to any other element through the connections be-
tween the elements), and it is not split into several isolated groups of elements.
Since the resulting model fragment is a subset of the original model fragment
and the original was present in the referenced product model, the resulting
product model will always be present in the referenced product model.

– Additive Mutation: This kind of mutation randomly adds some elements to
the model fragment. The only constraint is that the resulting model fragment
be part of the referenced product model. To achieve this, the boundaries of the
model fragment with the rest of the product model are identified and then a
random element from the boundary is added to the resulting model fragment.
By doing so, the mutated model fragment will be part of the referenced product
model.

Both, crossover and mutation operations are designed to produce individuals,
by selecting subset of existing models to conform the new model fragment. The
focus of this paper is generating a subset of model elements that are relevant to the
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bug that the domain expert wants to locate. The resultant model fragments are
then presented to a domain expert for his assessment of its relevance for finding
the bugs.

As a result, a new model fragment is created, but it still references the same
product model. In other words, the model fragment represents another possible
solution that can contain the bug (that is present in the product model) for the
specific bug being located.

3.2 Fitness of the BLiM2 Approach

In evolutionary algorithms, the fitness step is used to assess the different degrees of
adaptation to the environment that different model fragments have. Following this
idea, our fitness step is used to determine the suitability of each model fragment
to the problem. The input of this step is a set of model fragments, and the output
produced is a set where each model fragment has been assigned with two fitness
values: the similarity to the feature description, and the timespan to the most
recent model fragment modifications.

3.2.1 Model Fragment Similarity to the Bug Description

To assess the relevance of each model fragment in relation to the bug descrip-
tion provided by the user, we apply methods based on Information Retrieval (IR)
techniques. There are many popular IR techniques such as Vector Space Model
(VSM) [53], Latent Semantic Indexing (LSI) [14] or Latent Dirichlet Allocation
(LDA) [10]. The research findings are ambiguous and contradictory about which
technique provides the best performance [57].

Based on our previous experience [6,19], we apply Latent Semantic Indexing
(LSI) to analyze the relationships between the description of the bug provided
by the user and the model fragments. Besides that LSI provides good results
when applied to source code [50,35,46], a recent work reveals that LSI performs
better when applied to text [48]. Product models are representations at a higher
abstraction level than the source code, and the language used to build them is
closer to the bug description language; similar to text.

LSI constructs vector representations of a query and a corpus of text documents
by encoding them as a term by document co-occurrence matrix, (i.e., a matrix
where each row corresponds to terms and each column corresponds to documents,
with the last column corresponding to the query). Each cell holds the number
of occurrences of a term (row) inside a document or the query (column). Fig.
7 shows the term extraction from a model fragment. The text of the document
corresponds to the names and values of the properties and methods of each model
fragment from the model and the metamodel, see Fig. 7. The metamodel provides
the names of classes, attributes, and methods, while the model provides the values
of these attributes and methods. The left part of Fig. 7 shows a model fragment
with its corresponding metamodel fragment. The right part of Fig. 7 shows the
terms extracted, the number of occurrences, and the source of the term (which
comes from the model or from the metamodel). For example the term channel,
appears 2 times in the fragment and the term channel comes from the metamodel
(see the second column of the table in Fig. 7).
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Fig. 8 LSI applied to a model fragment

In our work, the documents are model fragments, i.e., a document of text is
generated from each of the model fragments. The query is constructed from the
terms that appear in the bug description. If the textual terms used for the model
and the bug description differ too much, the LSI will not work. Therefore, the
text from the documents (model fragments) and the text from the query (bug de-
scription) are homogenized by applying well-known Natural Language Processing
techniques (tokenizing, Parts-of-Speech Tagging, and Lemmatizing) to eventually
reduce this gap. If the languages used differ too much, other techniques such as
manual annotation of the model elements could be applied at the expense of in-
creasing the effort.

The union of all the keywords extracted from the documents (model fragments)
and from the query (bug description) are the terms (rows) used by our LSI fitness
(see Fig. 8). Each column is one of the model fragments; for example, the column
that is shaded in grey in Fig. 8 is the one that corresponds to the model fragment
from Fig. 7. The last column is the query obtained from the bug description of the
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user. Each row is one of the terms extracted from the corpuses of text composed
by all of the model fragments and the query itself. Each cell has the number of
occurrences of each of the terms in the model fragments.

Once the matrix is built (see Fig. 7), we normalize and decompose it into a set of
vectors using a matrix factorization technique called Singular Value Decomposition
(SVD) [31]. One vector that represents the latent semantics of the document is
obtained for each model fragment and the query. Finally, the similarities between
the query and each model fragment are calculated as the cosine between the two
vectors. The fitness value that is given to each model fragment is the one that we
obtain when we calculate the similarity, obtaining values between -1 and 1.

To make the variants of our approach, we can take the union of the terms
from the model and the metamodel (as shown in the example), or we can obtain
different co-occurrence matrices. One co-occurrence matrix from the terms of the
metamodel and another co-occurrence matrix from the terms of the model. This
way, we will obtain two fitness values instead of one.

3.2.2 The Most Recent Model Modification

To apply the Defect Localization Principle, we measure the timespan to the last
modifications of the model. As the modifications affect the model elements, each
model element has its own modification timespan. Thus, each model element has
a constant value of modification timespan during the execution of the algorithm,
but different model elements have different modification timespan values.

The modifications of the model over time are considered when extracting the
most relevant model from the target bug (the time difference between the last
modification of a model element and the usage day). A recently modified model
element (i.e., a short timespan) has a lower timespan value than another model
element that was modified farther in the past. Since a model fragment is composed
by a set of model elements, the timespan weighting of the model fragment depends
on the timespan weightings of the model elements that compose it.

The time difference is based on the number of days and can therefore be very
large when the model fragment was modified a long time ago. To normalize the
time difference, mathematical solutions such as square root or logarithm can be
used. We used square root because it has achieved good results in other works
that use time differences [62,27]. The use of square root is more suitable and more
effective for the proposed approach [66].

We consider the most recent model modification timespan as the modifica-
tion timespan weighting of a model fragment. We chose this assessment because
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it achieved the best results in our previous work [6]. This function expresses the
concern of capturing primarily the model fragments with the model elements that
have the lowest modification timespans, i.e., model elements that have been re-
cently modified. Then, the value of the model fragment will be the value of the
most recently modified model element.

In this work, the modification timespan can come from the metamodel or from
the model. If we follow the function presented in [6], in the example of Fig. 9,
the value of the model fragment is 7 days, which means a square root of 2.646.
However, we can obtain two fitness values, one from the model and another from
the metamodel. The value of the model fragment will remain 7 days (a square root
of 2.646), while the value of the metamodel fragment will be 20 days (a square
root of 4.472). This way, we will obtain two fitness values instead of one. A variant
of our BLiM2 applies these two fitness values.

3.3 BLiM2 Variants

When considering the possible variants of the BLiM2 approach, we have taken into
account the following facts, which are extracted from the previous subsections:

1. Information retrieval techniques are widely used in bug localization. Specifically
LSI, which provides good results applied to source code [50,35,46].

2. The Defect Localization Principle improves the results of the LSI when applied
together [62,55,6].

Fig. 10 shows the variants of BLiM2 taking into account these two facts. The
figure shows the BLiM2 approach with the fitness function and the combinations
of the information from the model and the metamodel, for a total of ten variants.

1. BLiM2 with one objective in the fitness function taking information from the
metamodel in timespan (BLiM2-1OT-MM).

2. BLiM2 with one objective in the fitness function taking information from the
model in timespan (BLiM2-1OT-M).

3. BLiM2 with one objective in the fitness function taking information from the
metamodel in similarity (BLiM2-1OS-MM).

4. BLiM2 with one objective in the fitness function getting two fitness values from
information from the model and the metamodel in similarity and in timespan
but combining these objectives in one with equal weight (BLiM2-1O).

5. BLiM2 with two objectives in the fitness function taking information from the
model in similarity and timespan (BLiM2-2O-M).

6. BLiM2 with two objectives in the fitness function combining information from
the model and the metamodel in similarity and timespan (BLiM2-2O).

7. BLiM2 with two objectives in the fitness function combining information from
the model and the metamodel in timespan (BLiM2-2OT).

8. BLiM2 with three objectives in the fitness function combining information from
the model and the metamodel in similarity and getting one value for each one
in timespan (BLiM2-3OT).

9. BLiM2 with three objectives in the fitness function combining information from
the model and the metamodel in timespan and getting one value for each one
in similarity (BLiM2-3OS).
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Fig. 10 Variants of the BLiM2 approach
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10. BLiM2 with four objectives in the fitness function getting two fitness values
from information from the model and the metamodel in similarity and in times-
pan (BLiM2-4O).

3.4 Implementation Details

Our algorithm is based on NSGA-II [13], one of the most frequently used Multi-
Objective Evolutionary Algorithms. Given a set of model fragments where each
model fragment has a fitness value for its bug similarity (see section 3.2.1) and
its recent time modifications (see section 3.2.2), NSGA-II orders these model frag-
ments by means of non-dominated sorting. A model fragment is non-dominated
if the following holds: 1) there is no other model fragment that is better than
the current one for some fitness value; and 2) the current model fragment does
not worsen other fitness values. As a result, NSGA-II finds pareto-optimal model
fragments.

Algorithm 1 BLiM2 (NSGA-II-based)

Require: Size, pc, pm,MaxEval
Ensure: PF ← set of nondominated solutions
1: P = 0
2: evaluations = 0
3: for (i = 1 to Size) do
4: s← NewSolution()
5: EvaluateF itness(s)
6: evaluations← evaluations+ 1
7: P ← P + 1
8: end for
9: while (evaluations < MaxEval) do

10: PO ← 0
11: for (i = 1 to Size/2) do
12: parents← Selection(P )
13: offspring ← Crossover(offspring)
14: offspring ←Mutation(parents)
15: EvaluateF itness(offspring)
16: evaluations← evaluations+ 1
17: PO ← PO + offspring
18: end for
19: P ← P ∪ PO

20: end while
21: PF ← BestFrom(P )
22: RankingAndCrowdingDistance(P )

We implemented the multi-objective evolutionary algorithm as outlined in Al-
gorithm 1. During the generation of the initial set (lines 3-8), model fragments
are randomly generated. The algorithm evaluates the fitness for each model frag-
ment and adds it to the initial set. During the evolution process (lines 11-18),
new offspring are generated as a result of selecting model fragments (by means
of the binary tournament selection), recombining them and applying a mutation
operation. The algorithm evaluates the fitness for each offspring and adds it to a
temporal set (line 17). By means of a combination of non-dominated sorting and
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Table 1 BLiM2 Configuration Parameters

Parameter description Value

Size: population size 100
µ: number of parents 2

λ: number of offspring from µ parents 2
r: solutions replaced by set size 2

pc: crossover probability 0.9
pm: mutation probability 0.1

crowding distance sorting [13], the algorithm selects the model fragments from
both the old set and the temporal set (line 19) to create a new set.

We performed some parameter tuning to find the best values for the parameters
of our algorithm. However, we did not find large differences that had an effect in
our main focus. The focus of this paper is not to tune the values to improve the
performance of the algorithms when applied to a particular problem, but rather
to compare the performance of the algorithms in terms of solution quality. Then,
we have principally chosen values for those settings that are commonly used in
the literature [54]. As suggested by Arcuri and Fraser [8], default values are good
enough to measure the performance of search-based techniques in the context of
testing. Hence, the crossover operation is applied with a crossover probability (pc)
of 0.9, and the mutation operation is applied with a probability (pm) of 0.1.

The number of generations (repetitions of the genetic operations and fitness
loop) allowed for the algorithm is 2500 since it is the value needed by our case
study to converge (note that this value is case specific). The rest of the settings are
detailed in Table 1. There are two atomic performance measures for evolutionary
algorithms: one regarding solution quality and another regarding algorithm speed.
In this work, we focus on the solution quality, determining the variant that provides
solutions that are closer to the one from the oracle in terms of recall, precision,
and MCC. Nevertheless, the time spent by each variant to reach the limit of 2500
generations is around 60 seconds.

We have used the Eclipse Modeling Framework to manipulate the models and
CVL to manage the fragments of models. The IR techniques used to process the
language have been implemented using OpenNLP [2] for the POSTagger and the
English version of the Porter 2 [1] as the stemming algorithm. The LSI has been
implemented using the Efficient Java Matrix Library (EJML [3]). The genetic op-
erations are built upon the Watchmaker Framework for Evolutionary Computation
[16].

4 Evaluation

This section presents the evaluation of our approach: the oracle preparation, the
experimental setup, a description of the case study where we applied the evalua-
tion, the results obtained, the statistical analysis performed, the discussion of the
results, and the threats to validity.

To evaluate the approach, we applied it to an industrial case study from our
industrial partner: BSH, a leading manufacturer of home appliances in Europe.
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4.1 Oracle Preparation

The oracle is the ground truth and is used to compare the results provided by
the BLiM2-X approaches, the baseline, and the random search (RS) that works
as sanity check. The baseline is the approach used in our industrial partner for
bug localization [19]. As we explained in section 2.1, a bug can be seen as an
unwanted functionality, and a feature represents a functionality. For this reason,
the feature localization approach presented in Font et. al [19] can be used for bug
localization. Even though it was designed with a more general purpose in mind
(Feature Localization), it is the best they have for Bug Localization in Models.

To prepare the oracle, our industrial partner provided us with the bug reports
that have occurred in the product models. These bug reports contain natural
language bug descriptions and the approved model fragments that contain the
target bugs.

4.2 Experimental setup

This experiment evaluates whether or not the information found in the metamodel
improves the bug localization results. In addition, we compare the BLiM2-X ap-
proaches with the baseline [19] and with a random search (RS) sanity check. If
RS outperforms an intelligent search method, we can conclude that there is no
need to use metaheuristic search. We use the name BLiM2-X to represent any of
the variants of our approach; the letter ’X’ represents one of ’1OT-MM’, ’1OT-M’,
’1OS-MM’, ’1O’, ’2O-M’, ’2O’, ’2OT’, ’3OT’, ’3OS’, and ’4O’.

Test Case

input

input

input output

input outputComparison
to OracleBaseline output

BLiM2-X
output BLiM2-X

Ranking

Baseline
Ranking

RS output
RS

Ranking

BLiM2-X
Report

Baseline
Report

RS
Report

input output
input

Fig. 11 Evaluation process

Fig. 11 shows an overview of the process that was followed to evaluate our
BLiM2-X approach. The left part of the figure shows the inputs of the evaluation
process provided by our industrial partner, which are the product family and bug
reports. The product family and bug descriptions are used to run BLiM2-X and
the baseline approaches. We run each of the approaches and obtain a ranking of
model fragments that we can compare with an oracle in order to check accuracy.
The inputs of the evaluation process, which are the product family and bug reports,
were provided by our industrial partner.
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Product Model 2
Model Fragment 
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TRUE 

FALSE TRUE 
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Comparison and
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Product Model 2
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Predicted Realization of Bug #1 

Fig. 12 Example of the comparison process and the confusion matrix

Therefore, in order to compare the baseline and the RS approaches with
BLiM2-X, we first take the best solution of the baseline and RS approaches. Sec-
ond, we take the best solution of each BLiM2-X. Finally, these solutions are then
compared to the model fragment that contains the target bug of the oracle in order
to get a confusion matrix.

A confusion matrix is a table that is often used to describe the performance of
a classification model (in this case, BLiM2-X and the baseline) on a set of test data
(the solutions) for which the true values are known (from the oracles). In our case,
each solution that is output by the approaches is a model fragment composed of a
subset of the model elements that are present in the product model (where the bug
is being located). Since the granularity will be at the level of model elements, the
presence or absence of each model element will be considered as a classification.
Therefore, our confusion matrices will distinguish between two values (TRUE or
presence and FALSE or absence).

Fig. 12 shows an example of the comparison process that is performed to
compare a result from one of the evaluated approaches with the ground truth
from the oracle and the resulting confusion matrix. We obtain a confusion matrix
for each of the solutions predicted by each of the approaches. The left part of Fig.
12 shows the actual model fragment that contains the bug (obtained from the
oracle and considered the ground truth) while the right part of Fig. 12 shows the
predicted model fragment output by the approach. The confusion matrix arranges
the results of the comparison into four categories:

– True positive (TP): A model element present in the predicted model fragment
that is also present in the actual model fragment (e.g., the upper power man-
ager model element is a TP).

– True Negative (TN): A model element not present in the predicted model
fragment that is not present in the actual model fragment (e.g., the bottom
inverter model element is a TN).

– False Positive (FP): A model element present in the predicted model fragment
that is not present in the actual model fragment (e.g., the upper inverter model
element is a FP).

– False Negative (FN): A model element not present in the predicted model
fragment that is present in the actual model fragment (e.g., the upper inductor
model element is a FN).

The confusion matrix holds the results of the comparison between the pre-
dicted results and the actual results. The result of the sum of all the categories
(TP+TN+FP+FN) is the number of model elements (n) of the model that con-
tains the predicted model fragment. However, in order to evaluate the performance
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of the approach, it is necessary to extract some measurements from the confusion
matrix. Then, some performance measurements are derived from the values in the
confusion matrix. Specifically, we create a report that includes four performance
measurements (recall, precision, the F-measure, and MCC) for each of the test
cases for BLiM2-X and the baseline.

Recall measures the number of elements of the solution that are correctly
retrieved by the proposed solution and is defined as follows:

Recall =
TP

TP + FN
(1)

Precision measures the number of elements from the solution that are correct
according to the ground truth (the oracle) and is defined as follows:

Precision =
TP

TP + FP
(2)

The F-measure corresponds to the harmonic mean of precision and recall and
is defined as follows:

F −measure = 2 ∗ Precision ∗Recall

Precision + Recall
(3)

Recall values can range between 0% (i.e., no single model element from the
model fragment that contains the bug obtained from the oracle is present in any
of the model fragments of the solution) to 100% (i.e., all the model elements from
the oracle are present in the solution).

Precision values can range between 0% (i.e., no single model fragment from
the solution is present in the model fragment that contains the bug obtained from
the oracle) to 100% (i.e., all the model fragments from the solution are present
in the model fragment that contains the bug from the oracle). A value of 100%
precision and 100% recall implies that both the solution and the model fragment
that contains the bug from the oracle are the same.

However, none of these measures correctly handle negative examples (TN).
The MCC is a correlation coefficient between the observed and predicted binary
classifications that takes into account all of the observed values (TP, TN, FP, FN).
MCC is a balanced measure which can be used even if the search space and the
predicted solution are of very different sizes [11]. For this reason, MCC is one of
the best measures for describing a confusion matrix [47]. It is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

4.3 Case Study

To evaluate the approach, we applied it to an industrial case study from our
industrial partner.
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4.3.1 BSH

The case study where we applied our evaluation process is the Induction Hob
Product Family of our industrial partner (already presented in section 2 as the
running example). The oracle is composed of 46 induction hob models, which, on
average, are composed of more than 500 elements. Our industrial partner provided
us with documentation of 37 bug reports and the approved model fragments that
contain the bugs.

The approved model fragments have between 3 and 15 model elements, with an
average of 8 model elements. It is important to highlight that each model element
has properties (that include terms), and a modification timespan, which are used
to differentiate among model elements. Five domain engineers from our industrial
partner were involved in providing the set of 37 bugs. The domain engineers of
BSH based their selection on a combination of importance and frequency. The set
of bugs provided are the most representatives of the bugs that occurs in BSH.

For each of the 37 bugs, we created a test case that includes the set of prod-
uct models where that bug was manifested and a bug description, both obtained
from the documentation. The following video illustrates the models and model
fragments of BSH: youtube.com/watch?v=nS2sybEv6j0

Each time we run each of the approaches we get one results for a bug. As
the approaches performs genetic operations, chance could affect the results. In
order to minimize the effect of chance, we execute each of the approaches 30 times
for each of the bugs as suggested in [8]. Then, for this case study, we executed
30 independent runs for each of the 37 test cases for BLiM2 and the baseline
approach, i.e., 37 (bugs) x 10 (approaches) x 30 repetitions = 11,100 independent
runs.

4.4 Results

In this section, we present the results obtained for the case study in BLiM2-X,
the baseline, and RS approaches in BSH. Fig. 13 shows the charts with the recall
and precision results for the industrial domain. A dot in the graph represents the
average result of precision and recall for each of the 37 bugs in BSH for the 30
repetitions.

Table 2 shows the mean values of recall, precision, the F-measure, and MCC
for BLiM2-X, the baseline and the random search in the case study. There are five
algorithms that obtained best results than the baseline. The BLiM2-3OT approach
obtains the best results in recall, precision, and MCC, providing an average value
of 89.84% in recall, 80.87% in precision, and 0.82 in MCC. The second best results
are obtained by BLiM2-4O, providing an average value of 83.03% in recall, 75.05%
in precision, and 0.76 in MCC. The third best values are obtained by BLiM2-2O,
providing an average value of 80.76% in recall, 72.56% in precision, and 0.72 in
MCC. The fourth best values are obtained by BLiM2-3OS, providing an average
value of 73.72% in recall, 67.97% in precision, and 0.66 in MCC. The fifth best
values are obtained by BLiM2-1O, providing an average value of 66.26% in recall,
61.29% in precision, and 0.59 in MCC. The rest of the algorithms obtained lower
results. In terms of recall, precision, and MCC, BLiM2-3OT outperforms the rest
of the approaches.

youtube.com/watch?v=nS2sybEv6j0
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Fig. 13 Mean Recall and Precision values for BLiM2 and baseline approaches in BSH

4.5 Statistical Analysis

To properly compare our BLiM2 approaches and the baseline approach, all of the
data resulting from the empirical analysis was analyzed using statistical methods
following the guidelines in [7]. The goals of our statistical analysis are: (1) to



22 Lorena Arcega et al.

Table 2 Mean values and standard deviations for Recall, Precision, the F-measure, and MCC
in BSH

Recall ± (σ) Precision ± (σ) F-measure ± (σ) MCC ± (σ)

BLiM2-1OT-MM 37.98 ± 5.35 40.66 ± 6.61 37.20 ± 5.60 0.31 ± 0.05
BLiM2-1OT-M 49.11 ± 9.38 48.07 ± 5.40 48.53 ± 5.76 0.43 ± 0.06

BLiM2-1OS-MM 32.03 ± 5.57 35.91 ± 3.91 33.99 ± 3.19 0.25 ± 0.04
BLiM2-1O 66.26 ± 9.70 61.29 ± 7.11 63.43 ± 5.03 0.59 ± 0.05

BLiM2-2O-M 55.17 ± 5.41 53.02 ± 5.33 54.05 ± 4.69 0.48 ± 0.04
BLiM2-2O 80.76 ± 10.95 72.53 ± 7.68 75.34 ± 6.75 0.72 ± 0.07

BLiM2-2OT 43.06 ± 5.64 44.62 ± 3.24 43.82 ± 3.91 0.36 ± 0.04
BLiM2-3OT 89.84 ± 6.01 80.87 ± 4.51 84.18 ± 4.95 0.82 ± 0.04
BLiM2-3OS 73.72 ± 6.93 67.97 ± 6.91 70.39 ± 4.89 0.66 ± 0.05

BLiM2-4O 83.03 ± 7.43 75.05 ± 6.16 79.58 ± 5.66 0.76 ± 0.06
Baseline 62.10 ± 8.42 57.57 ± 4.89 59.49 ± 4.31 0.54 ± 0.04

Random Search 29.05 ± 4.90 30.20 ± 4.15 29.75 ± 3.77 0.21 ± 0.04

provide formal and quantitative evidence (statistical significance) that BLiM2 does
in fact have an impact on the comparison metrics (i.e., that the differences in the
results were not obtained by mere chance); and (2) to show that those differences
are significant in practice (effect size).

4.5.1 Statistical Significance

To enable statistical analysis, all of the algorithms should be run a large enough
number of times (in an independent way) to collect information on the probabil-
ity distribution for each algorithm. A statistical test should then be run to assess
whether there is enough empirical evidence to claim (with a high level of confi-
dence) that there is a difference between the two algorithms (e.g., A is better than
B). In order to do this, two hypotheses, the null hypothesis H0 and the alternative
hypothesis H1, are defined. The null hypothesis H0 is typically defined to state
that there is no difference among the algorithms, whereas the alternative hypoth-
esis H1 states that at least one algorithm differs from another. In such a case, a
statistical test aims to verify whether the null hypothesis H0 should be rejected.

The statistical tests provide a probability value, p − V alue. The p − V alue
obtains values between 0 and 1. The lower the p−V alue of a test, the more likely
that the null hypothesis is false. It is accepted by the research community that a
p − V alue under 0.05 is statistically significant [8], so the hypothesis H0 can be
considered false.

The test that we must follow depends on the properties of the data. Since
our data does not follow a normal distribution in general, our analysis requires the
use of non-parametric techniques. There are several tests for analyzing this kind of
data; however, the Quade test shows that it is more powerful than the others when
working with real data [20]. In addition, according to Conover [12], the Quade test
has shown better results than the others when the number of algorithms is low
(no more than 4 or 5 algorithms).

The p − values obtained in the test is � 2.2x10−16 for recall, precision, and
MCC; the statistics values obtained are 82.581, 82.412, and 93.53 for recall, preci-
sion, and MCC, respectively. Since the p− values are smaller than 0.05 for recall,
precision, and MCC, we reject the null hypothesis. Consequently, we can state
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Table 3 Holm’s post hoc p− V alues and the Â12 statistic for each pair of algorithms

Holm’s Â12

Recall Precision MCC Recall Precision MCC

3OT vs. 1OT-MM � 2.2x10−16 � 2.2x10−16 � 2.2x10−16 1 1 1
3OT vs. 1OT-M � 2.2x10−16 � 2.2x10−16 � 2.2x10−16 1 1 1

3OT vs. 1OS-MM � 2.2x10−16 � 2.2x10−16 � 2.2x10−16 1 1 1
3OT vs. 1O 5.8x10−10 1.6x10−8 1.4x10−11 0.99489 0.99672 1

3OT vs. 2O-M � 2.2x10−16 � 2.2x10−16 � 2.2x10−16 1 1 1
3OT vs. 2O 0.21685 0.00743 0.00940 0.75347 0.85793 0.89883

3OT vs. 2OT � 2.2x10−16 � 2.2x10−16 � 2.2x10−16 1 1 1
3OT vs. 3OS 7.1x10−5 0.00066 7.0x10−5 0.98247 0.95435 0.99927
3OT vs. 4O 0.68994 0.57992 0.45910 0.70380 0.73887 0.79657

3OT vs. Baseline 4.8x10−12 1.6x10−12 � 2.2x10−16 1 1 1
3OT vs. RS � 2.2x10−16 � 2.2x10−16 � 2.2x10−16 1 1 1

that there are differences among the algorithms for the performance indicators of
recall, precision, and MCC.

However, with the Quade test, we cannot answer the following question: Which
of the algorithms gives the best performance? In this case, the performance of
each algorithm should be individually compared against all other alternatives. In
order to do this, we perform an additional post hoc analysis. This kind of analysis
performs a pair-wise comparison among the results of each algorithm, determining
whether statistically significant differences exist among the results of a specific pair
of algorithms.

Table 3 shows the p − V alues of Holm’s post hoc analysis for the case study
and the performance indicators for the algorithm that obtains the best results,
BLiM2-3OT 1. The majority of the p − V alues obtained are smaller than their
corresponding significance threshold value (0.05), indicating that the differences in
performance between the algorithms are significant. However, when we compare
BLiM2-3OT with BLiM2-2O (sixth row), and BLiM2-3OT with BLiM2-4O, the
values are greater than the threshold. This indicates that the differences between
those algorithms could be due to the stochastic nature of the algorithms and are
not significant.

4.5.2 Effect size

When comparing algorithms with a large enough number of runs, statistically
significant differences can be obtained even if they are so small as to be of no
practical value [8]. Thus it is important to assess if an algorithm is statistically
better than another and to assess the magnitude of the improvement. Effect size
measures are needed to analyze this.

For a non-parametric effect size measure, we use Vargha and Delaney’s Â12

[58,22]. Â12 measures the probability that running one algorithm yields higher
values than running another algorithm. If the two algorithms are equivalent, then
Â12 will be 0.5.

For example, Â12 = 0.7 means that we would obtain better results in 70% of
the runs with the first of the pair of algorithms that have been compared, and

1 Although we have performed the entire statistical significance analysis, here we decide to
show only the combinations with the algorithm that obtained the best results. Table 5 shows
the entire table with the sixty-six combinations (at the end of the paper)
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Â12 = 0.3 means that we would obtain better results in 70% of the runs with the
second of the pair of algorithms that have been compared. Thus, we have an Â12

value for every pair of algorithms.

Table 3 shows the values of the size effect statistics 2. In general, the largest dif-
ferences were obtained between BLiM2-3OT and BLiM2-1OT-MM, BLiM2-1OT-
M, BLiM2-1OS-MM, BLiM2-2O-M, BLiM2-2OT,the baseline, and the RS, where
BLiM2-3OT achieves better results all of the times. When comparing BLiM2-3OT
and BLiM2-4O, the differences are not so large, with around 78% in performance.

BLiM2-3OT obtained the best performance results among the twelve evaluated
approaches (see Table 2). The performed statistical analysis indicated that BLiM2-
3OT outperforms the rest of the approaches in terms of recall, precision, and MCC.
Overall, these results confirm that the use of BLiM2-3OT against the baseline
approach has an actual impact. In other words, BLiM2-3OT obtained better results
in recall, which means that the model fragment proposed as the solution has more
relevant elements for the bug that must be located than the model fragments
proposed by the baseline approach. In the same way, BLiM2-3OT obtained better
results in precision, which means that the model fragment proposed as the solution
has less non-relevant elements for the bug that we must be located than the model
fragments proposed by the baseline approach.

4.6 Discussion

Our results confirm that the BLiM2 variants and the baseline approaches are
better than random search based on the four metrics (recall, precision, F-measure,
and MCC) on the BSH case study. Through this study, we concluded that there
is empirical evidence to support the significance of the results of our algorithms.
Thus, an intelligent algorithm is required to find good solutions to perform bug
localization in models.

The BLiM2-3OT variant outperforms the rest of the variants of our approach.
However, it did not obtain the perfect solution for a bug in any of the cases. In
other words, the model fragments obtained from our approach do not include all
of the model elements that contain the bug.

One of the issues that we detected that cause this outcome is the vocabulary
mismatch. That means that for a specific concept, the terms used in the bug de-
scription are different from the terms used in the models. For example, the bug
description includes the word ’current’ to refer to the electrical energy that reaches
an inductor. However, in the models, the word ’power’ stands for the same con-
cept. Nevertheless, this issue could be solved by augmenting the Natural language
processing (NLP) with a dictionary of synonyms. In the same way, we have also
detected cases in which in-house terms are used; for example, instead of using
the word inverter, the name of a manufacturer is used (’Fairchild’ ). Therefore, the
regular dictionary of synonyms would not work in this case. This suggests that the
dictionary of synonyms should be refined by domain engineers to include in-home
terms.

2 Although we have performed the entire size effect statistics analysis, here we decide to
show only the combinations with the algorithm that obtained the best results. Table 6 shows
the entire table with the sixty-six combinations (at the end of the paper)
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Another issue is the case in which the bug description is incomplete. For ex-
ample, in a bug description the following sentence can appear: ’The induction hob
crashes when the user selects the power level 9 for a double inductor’. The engineers
understand that the inductors have to reach that power level when the user selects
it. However, this sentence also embodies implicit knowledge that is not written but
is obvious to the domain engineers: ’The double inductor is formed by two concen-
tric inductors’, and ’If the pot that is on the top is large enough, both inductors
have to reach the power level 9, otherwise, only the central inductor must reach
that level.’. Omitting words in the bug description negatively influences the fitness
value of textual similarity since the fitness value of textual similarity is based on
the co-occurrence of terms. This suggests that we must make the engineers aware
of this issue. They should know that in cases in which the results obtained do
not have enough quality and more model elements need to be located, they can
reformulate the descriptions of the bugs making the implicit knowledge explicit.

In addition, the variants of our approach that combine model and metamodel
terms in one objective obtain better results. This outcome is due to the fact that,
in the bug description, terms from the model and the metamodel are mixed. From
the metamodel comes general terms that are shared by all the induction hobs,
but differentiate the parts. For example, with the words from the metamodel, the
approach discriminates between inductors and inverters. From the model come
terms that specifies the part of the induction hob. For example, with the words
from the model, the approach discriminates between double inductor and single
inductor. A complete example is the following sentence from a bug description: ’In
the induction hobs that have a triple inductor and a pool inductor, the power booster
does not work’. The terms from the metamodel are: induction hob, inductor, and
power, and the terms from the model are: triple, pool, and booster. Therefore,
higher values of textual similarity (co-occurrence of terms) will be reached when
comparing the description of the bug with the combined terms of the model and
the metamodel.

Therefore, the variants of our approach that combine model and metamodel
terms in one objective obtains similar results. However, the differences come from
the way in which the Defect Localization Principle is measure. For example, be-
tween BLiM2-3OT and BLiM2-2O the difference is around 10% in favor of BLiM2-
3OT. In BLiM2-2O, the approach gives one fitness value for the timespan, this
produces that there are not so many differences between those that have recently
been modified and those that have not.

We believe that the above is especially interesting since it can be an impor-
tant difference between generic modeling languages and DSLs when locating bugs.
Unlike generic modeling languages, such as UML, metamodel elements in DSLs
contain domain information. On the one hand, the metaelement Class of UML is
generic enough to be relevant for different domains. On the other hand, a metaele-
ment such as Inductor of the Induction Hobs DSL is relevant for specific domains
only. This is also the case of other generic modeling languages, such as BPMN
or ARCHIMATE. This suggests that in the hypothetical case that the induction
hobs would have been specified with a generic modeling language, the results could
have been worse since the terms of the model (e.g., class) would not be similar to
the terms of the description of the bug (e.g., inductor). Therefore, we think that
specific experiments should be carried out with generic modeling languages to de-
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termine the performance with the current approach, assess the need to reformulate
the query, or even identify new objectives to guide the bug localization.

Finally, our results confirm the relevance of the Defect Localization Principle
to models. The majority of bugs provided by the industrial partner (about 90%)
are related to recent modifications. For bugs that are not related to recent modifi-
cations, our approach (in spite of including a timespan objective) obtains similar
or slightly worse results than the baseline in terms of recall, precision, and MCC.
This suggests that, given a bug description where we do not know whether or not
the recent modification timespans are relevant, the inclusion of the objective of
the Defect Localization Principle, in general, leads to better results than if it is
not included. Since modification timespan is important in the localization of bugs,
the variants of our approach in which we give more relevance to it obtain better
results.

The ten variants of our approach are vulnerable to the following issues: vocabu-
lary mismatch and descriptions with implicit knowledge. For textual similarity, the
variants that mix the information from the model and the metamodel (BLiM2-
2O and BLiM2-3OT) obtained the best results. For timespan modification, the
variants that differentiate between modifications in the model and the metamodel
(BLiM2-2OT and BLiM2-4O) obtained the best results. BLiM2-3OT, which com-
bines the above, is the one that obtains the best results in models like those of our
industrial partner.

Bugs cannot be located using only textual similarity (as the baseline does)
due to the vocabulary mismatch and to the descriptions with implicit knowledge.
The reason is that some text is missing or that the text is different between the
description of the bug and the models. Bugs can not be located using only the
Default Localization Principle either. The reason is that all recent modifications
would be suggested as relevant to the bug. Bugs can not be located using only
information from the metamodel. The reason is the terms of the metamodel are
the same for the specific elements of the model, and for the timespan occurs the
same, if a modification is performed in an element of the metamodel the time
is the same for all those elements of the models. The combination of model and
metamodel information allows the approach to discriminate between the rest of
the element and between the specific elements.

Hence, the combination of textual similarity and Defect Localization Principle
pays off to locate bugs. Specifically, the combination that gives more weight to
the Defect Localization Principle than to the textual similarity. In particular, the
best results are obtained by the variant BLiM2-3OT of our approach that has
2 objectives of 3 related to the Defect Localization Principle and 1 of 3 related
to textual similarity. It turns out that with 2 of 3 objectives the fragments are
prioritized according to the Defect Localization Principle (it happens to about
90% of the bugs) and the third objective (even imperfect due to the vocabulary
mismatch and to the descriptions with implicit knowledge) is able to differentiate
between the recent modifications not relevant to the bugs and those that are
relevant to the bugs.
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4.7 Threats to Validity

In this section, we present some of the threats to validity. We follow the guidelines
suggested by De Oliveira et. al [44] to identify those that are applicable to this
work.

Conclusion validity threats. The first identified threat of this type is not
accounting for random variation. To address this threat, we considered 30 indepen-
dent runs for each bug with each algorithm. The second threat is lack of formal
hypothesis and statistical tests. In this paper, we employed standard statistical
analysis following accepted guidelines [8] in order to avoid this threat. The third
threat is the lack of good descriptive analysis. In this work, we have used precision,
recall, the F-measure, and MCC metrics to analyze the confusion matrix obtained
from the experiments; however, other metrics could also be applied. In addition,
some works argue that the use of the Vargha and Delaney’s Â12 metric may be
misrepresentative [43] and that the data should be pretransformed before applying
it. We did not find any use case for data pretransformation that applies to our
case studies.

Internal validity threats. The first identified threat of this type is poor
parameter settings. In this paper, we used standard values for the algorithms.
These values have been tested in similar algorithms for feature localization [36].
In addition, the choice of the k value in the application of SVD can produce
suboptimal accuracy when using LSI for software artifacts [45]. However, we plan
to evaluate all of the parameters of our algorithm in a future work. The second
threat is lack of clear of data collection tools and procedures. The set of 37 bugs
used in the evaluation has been provided by domain experts of BSH. The set of
bugs provided are the most representatives of the bugs that occurs in BSH. The
third threat is lack of real problem instances. The evaluation of this paper was
applied to an industrial case study, BSH.

Construct validity threats. The identified threat is lack of assessing the
validity of cost measures. To address this threat, we performed a fair compari-
son between BLiM2-X and the baseline by generating the same number of model
fragments and using the same number of fitness evaluations.

External validity threats. The identified threat of this type is lack of a clear
object selection strategy. This threat is addressed by using an industrial case study.
Our instances are collected from real-world problems.

5 Related Work

In recent years, many bug localization approaches have been proposed. These
approaches are usually IR-based approaches, and some of them add the Defect
Localization principle. Since our Bug Localization in Models approach applies
these techniques to models, in this section, we review some relevant works in the
literature. Table 4 shows a summary of the main features of these works.

The first block of works in Table 4 shows the works that are related to this
paper:

– Kusumoto et al. [29] and Liang et al. [34] apply static program slicing to bug
localization. They apply static slicing to reduce the search domain while pro-
grammers locate bugs in their programs. In [29], they evaluate this technique
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Table 4 Summary of the works cited in the Related Work section

Approach
Information

Retrieval
Defect

Localization Principle
Locates Source Code Model Metamodel

Kusumoto et al. [29] No No Bugs Yes No No
Liang et al. [34] No No Bugs Yes No No
Mao et al. [39] No No Bugs Yes No No
Alves et al. [4] No No Bugs Yes No No
Gong et al. [21] No No Bugs Yes No No
Saha et al [51] Yes No Bugs Yes No No
Zhou et al. [65] Yes No Bugs Yes No No
Rao et al. [49] Yes No Bugs Yes No No

Lukins et al. [38] Yes No Bugs Yes No No
Kim et al. [28] Yes No Bugs Yes No No
Le et al. [32] Yes No Bugs Yes No No

Hoang et al. [25] Yes No Bugs Yes No No
Lam et al. [30] Yes No Bugs Yes No No

Zamani et al. [62] Yes Yes Bugs Yes No No
Sisman and Kak [55] Yes Yes Bugs Yes No No

Wang and Lo [59] Yes Yes Bugs Yes No No
Wille et al. [60] No No Features No Yes No

Holthusen et al. [26] No No Features No Yes No
Zhang et al. [63,64] No No Features No Yes No

Martinez et al. [42,41] No No Features No Yes No
Lopez-Herrejon et al. [37] No No Features No Yes No

Arcega et al. [5] Yes No Features No Yes No
Font et al. [18,19] Yes No Features No Yes No
Arcega et al. [6] Yes Yes Bugs No Yes No

Our approach Yes Yes Bugs No Yes Yes

and confirm that it is useful for bug localization. In [34], they use this tech-
nique to improve the efficiency of data-flow analysis in the presence of pointer
variables.

– Mao et al. [39] use dynamic slicing and statistical bug localization. They utilize
program slices of a set of test runs to capture the influence of a program entity’s
execution on the output, and they use statistical analysis to measure the level
of suspiciousness of each program entity being faulty. Their approach is called
approximate dynamic backward slice.

– In the same way, Alves et al. [4] combine dynamic slicing and spectrum-based
techniques. They rank all of the statements in a program based on their level of
suspiciousness, which is calculated by using a spectrum-based technique (the
Tarantula technique). Then, they generate a dynamic slice with respect to a
failure-indicating variable at the failure point. The statements that are not in
the slice are removed from the ranking to reduce the search domain.

– Gong et al. [21] propose an interactive localization technique called TALK.
This approach incorporates programmers’ feedback into spectrum-based fault
localization techniques. When the programmer receives the ranking of program
elements that can cause the bug, he or she can judge the correctness of each
element and provide this information as feedback to re-order the ranking.

– Saha et al. [51], Zhou et al. [65], and Rao et al. [49] apply information retrieval
for bug localization. In [51], the authors present BLUiR, Bug Localization
Using information Retrieval. In [65], the authors propose BugLocator. Both
works use an initial bug report to rank the source code files in descending
order based on their relevance to the bug report.

– Lukins et al. [38] used Latent Dirichlet Allocation (LDA) for predicting the lo-
cation of a newly reported bug. They use source code comments and identifiers
as information resources for predicting the locations of bugs.
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– Kim et al. [28] propose both a one-phase and a two-phase prediction model
to recommend files to fix. In the one-phase model, they create features from
textual information and metadata of bug reports, apply Nave Bayes to train
the model using previously fixed files as classification labels, and then use
the trained model to assign multiple source files to a bug report. In the two-
phase model, they first apply their one-phase model to classify a new bug
report as either ”predictable” or ”deficient” and then make predictions only
for ”predictable” report.

– Le et al. [32] and Hoang et al. [25] combine information retrieval and spectrum-
based techniques. In [32,25], they presents two approaches that utilize multi-
modal information from both bug reports and program spectra to localize bugs.

– Lam et al. [30] present an approach that uses deep neural network (DNN) in
combination with rVSM, an information retrieval technique. rVSM collects the
feature on the textual similarity between bug reports and source files. DNN is
used to learn to relate the terms in bug reports to potentially different code
tokens and terms in source files.

– Zamani et al. [62], Sisman and Kak [55], and Wang and Lo [59] include the
Defect Localization principle in their approaches. In [62], they proposed an
approach that included weighting and ranking the source code locations based
on both the textual similarity with a change request and the use of the time
metadata. In [55], they utilize time decay in weighting the files in a probabilis-
tic information retrieval model. In [59], they present AmaLgam+, which is a
method for locating relevant buggy files that puts together fives sources of in-
formation: version history, similar reports, structure, stack traces, and reporter
information.
These approaches give better results than information retrieval techniques.

All of the above works present approaches that only take into account the
source code as the artifact that represents the bug. These approaches have not
been applied to models. In contrast, we propose an approach that can be con-
figured to apply these ideas (static and dynamic analysis, information retrieval,
and the Defect Localization Principle) in models. We have evaluated the approach
successfully by applying them in models. Moreover, our approach does not apply
the dynamic analysis that is used by some of those cited. Our future work involves
designing an approach that addresses the dynamic analysis idea using models at
run-time [9]

Some works focus on the localization of features in models by comparing the
models with each other to formalize the variability among them in the form of a
Software Product Line:

– Wille et al. [60] present an approach where the similarity between models
is measured following an exchangeable metric, taking into account different
attributes of the models. Then, the approach is further refined [26] to reduce
the number of comparisons needed to mine the family model.

– The authors in [63] propose a generic approach to automatically compare prod-
ucts and locate the feature realizations in terms of a CVL model. In [64], the
approach is refined to automatically formalize the feature realizations of new
product models that are added to the system.

– Martinez et al. [42] propose an extensible approach that is based on compar-
isons to extract the feature formalization on a family of models. In addition,
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they provide means to extend the approach to locate features in any kind of
asset based on comparisons.

– The MoVaPL approach [41] considers the identification of variability and com-
monality in model variants as well as the extraction of a Model-based Software
Product Line (MSPL) from the features identified in these s. MoVaPL builds
on a generic representation of models making it suitable for any MOF-based
models.

– Lopez-Herrejon et al. [37] evaluate three standard search-based techniques
(evolutionary algorithm, hill climbing, and random search) in order to calculate
the relationships of a feature model. They calculate the feature relationships
of the feature specification layer, while our work locates the model fragments
of the product realization

Nevertheless, all of these approaches are based on mechanical comparisons
among the models, classifying the elements based on their similarity, and identify-
ing the dissimilar elements as the feature realizations. In contrast, our work does
not rely on model comparisons to locate the bugs. Specifically, in our work, we use
a multi-objective evolutionary algorithm that uses both the similarity to the bug
report and the timespan weighting as fitness functions.

In addition, there are other approaches for feature localization in models that,
although they were not designed to locate bugs, could potentially be applied to
do this. In the second block of works in Table 4, we show our previous works.

– In [5], we present an approach that is composed of dynamic analysis and in-
formation retrieval at the model level. We compare different ways of creating
model traces. This work outperforms the feature localization in source code.

– Font et al. [18,19] propose two approaches that use evolutionary algorithms to
locate features in a model. This work does not take into account the Defect
Localization Principle for bug localization.

– In [6], we analyze the influence of several timespan weightings on bug localiza-
tion in models. We evaluate four timespan weightings: the most recent model
modifications, the oldest model modifications, the mean of the modification
timespan of the modified model elements, and the sum of the modification
timespan of the modified model elements. The results show that the use of
the most recent timespan model modifications provides the best results in bug
localization.

In this work, we adapt the Defect Localization Principle that is used in source
code to models. The approach of this paper supports ten different fitness functions,
in which the Defect Localization Principle is used. This principle is applied using
the most recent timespan model modifications because it obtains the best results
in [6]. In addition, in contrast to our previous works, our approach takes into
account the domain information from the metamodel.

6 Conclusion

Bug localization is a significant maintenance activity. In this paper, we have pro-
posed an approach for bug localization in models (BLiM2) which enables us to
evaluate to what extent the ideas that have been successfully applied in source



Bug Localization in Models 31

code for bug localization (textual similarity to bug description and Defect Local-
ization Principle) also work in models. In addition, BLiM2 takes information from
two levels, the model and the metamodel, taking advantage of a particularity of
the models that does not exist in source code (in the models, there is domain
information in both the model and the metamodel).

We evaluated our BLiM2 approach in an industrial case study, BSH, and com-
pared it with the approach that they are using for bug localization. We deter-
mined which approach produces the best results in terms of precision, recall, the
F-measure, and MCC. To do this, we applied the approaches in BSH that has a
model based product family (firmware of Induction Hobs). We present our evalua-
tion, which includes the following: experimental setup, results, statistical analysis,
and threats to validity.

The results show that the domain information from the metamodel pays off
for bug localization. Specifically, the BLiM2-3OT of our approach achieves the
best results. It has three objectives in the fitness function: one that combines
information from the model and the metamodel for text similarity; one that takes
into account the modification timespan of the model; and one that takes into
account the modification timespan of the metamodel. Results also show that our
approach can be applied in real world environments. The statistical analysis of the
results provides evidence of their significance.
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