
Achieving Knowledge Evolution in Dynamic Software Product Lines

Lorena Arcega∗†, Jaime Font∗†, Øystein Haugen‡, Carlos Cetina∗
∗San Jorge University, SVIT Research Group, Zaragoza, Spain

Email: {larcega,jfont,ccetina}@usj.es
†University of Oslo, Department of Informatics, Oslo, Norway

‡Østfold University College, Faculty of Computer Science, Halden, Norway
Email: oystein.haugen@hiof.no

Abstract—Dynamic Software Product Lines (DSPLs) offer
a strategy to deal with software changes that need to be
handled at run-time. In response to context changes, a DSPL
capitalize on knowledge about the architecture variability of
the software system to shift between configurations. Similar
to any other kind of software, a DSPL needs to evolve over
time but current approaches require software engineers to
manually perform the DSPL evolution. Our work addresses
the evolution of the architecture variability that makes up the
knowledge of the DSPL. Given a new version of the architecture
variability, we calculate its configuration space and propose
strategies that allow migration from the current version to the
new version. Our strategy solves the collision of the realization
layer resulting from the integration of the new version of the
variability specification. We evaluate our dynamic evolution
strategy using the Goal-Question-Metric method for a Smart
Hotel case study with 239 possible configurations as starting
point. Our experiment indicates that the proposed technique
would enable automatic evolution in 9 out of 10 cases. In
the rest of the cases, all of the DSPL configurations changed
between the old and the new version, which frustrates an
automatic evolution.

I. INTRODUCTION

Dynamic Software Product Lines (DSPLs) offer a strategy
to deal with software changes that need to be handled at run-
time. Specifically, DSPLs shift between different configura-
tions triggered by context changes and are driven by means
of the architecture variability knowledge. A recent survey [1]
reveals that normally the knowledge of a DSPL is formalized
by a variability model and an architecture model described
in a Domain Specific Language (DSL). The infrastructure
that uses this knowledge for the run-time reconfigurations
is a MAPE-K loop [2]. DSPLs exist in several domains
such as transportation system’s production and warehousing
environments [3], recommendation systems [4], autonomous
navigation in robots [5], environmental monitoring [6], au-
tomotive systems [7] and smart homes [8], [9], [10].

Nevertheless, similar to any other kind of software, a
DSPL needs to evolve over time. However, the DSPL evo-
lution has some specific characteristics: (1) the co-evolution
of the variability model and the architecture model (if the
variability model evolves the architecture model must also
evolves and vice versa), and (2) the running system has to

be available for the interaction with the context throughout
the evolution.

Current research efforts in DSPLs propose the evolution
of DSPLs that are already deployed by developing and
deploying new software bundles that represent alternative
implementations [11], [1], [12], [13]. The integration of
new bundles into the DSPL has to be performed manually
by software engineers. They have to manually inspect and
manipulate the specification of variability and architecture
and do not guarantee that the system remains available
throughout the evolution of the knowledge of the DSPL.

Our work addresses the knowledge evolution of DSPLs.
We propose to address the DSPL knowledge evolution by
means of the configuration space of a DSPL. Given a new
version of the models of a DSPL, we calculate its configura-
tion space and propose strategies that allow migration from
the current version to the new version taking into account
shared configurations between their configuration spaces.

One problem that can arise during the evolution is the col-
lision between model elements. A collision is when a feature
of the DSPL is realized differently in the current version of
the DSPL compared with the new version of the DSPL. Our
strategy solves the collision of the realization layer resulting
from the integration of the variability specification by taking
into account each type of collision depending on its nature.
We develop a set of rules for solving each type of collision.

We evaluate our DSPL knowledge evolution strategy
using the Goal-Question-Metric method through a simu-
lated evolution of a Smart Hotel DSPL. The Smart Ho-
tel presents thirty-nine features in the feature model, and
thirteen services, twenty devices and thirty-five channels
in the architecture model. That is, the configuration space
of the Smart Hotel has 239 potential configurations. The
results of our work demonstrate that the proposed strategies
complement the current implementations by solving the
automatic evolution of the variability knowledge at run-time
in 9 out of 10 cases. In 1 out of 10 cases, our strategy cannot
evolve the DSPL automatically because the input models
differ greatly from each other, that is, they have no common
configurations.

The remainder of the paper is structured as follows. In
Section 2, we present the models and the implementation of

Variability Model
(Feature model)

Active
configuration

Inactive
configurations

Architecture Model
(PervML model)

Active
components

Inactive
components

K

A P

EM

Running Configuration

Devices - Services - People

Realization
layer

Partially connected

Interaction

Device ServiceChannel

Op�onal Mandatory

Mul�ple Choice Single Choice

(a) (b) (c)

M = Monitor, A = Analyse, P = Plan,

E = Execute and K = Knowledge

Gradual

Ligh�ng

Figure 1. (a) Subset of the Smart Hotel Feature Model, (b) Subset of the PervML model, and (c) MoRE.

the MAPEK loop. In Section 3, we introduce our evolution
strategy and the different evolution scenarios. In Section 4,
we explain the implementation details of our strategy. In
Section 5, we present our evaluation for the Smart Hotel
DSPL. In Section 6, we examine the related work, and we
present the conclusions in Section 7.

II. BACKGROUND

DSPLs move existing Software Product Line (SPL) engi-
neering processes to run-time, ensuring that each reconfig-
uration of the system reach a valid configuration state [1].
Therefore, a DSPL generates a single product which is able
to adapt its behaviour at run-time.

Variability modelling, which consist in defining the com-
monalities and variabilities, is the central activity of SPLs
and DSPLs. In a DSPL the variability model describes the
variations that can be produced at run-time. The variability
model refers to the system architectural components. In
DSPLs the system architecture supports all possible con-
figurations defined by the variability model.

The evaluation of this approach is performed through
a reconfigurable DSPL for a Smart Hotel [14]. The run-
time reconfigurations are performed by an implementation
of a MAPE-K loop [2] named Model-based Reconfiguration
Engine (MoRE) [14]. Recent surveys reveal that MAPE-K is
the most common implementation for reconfiguration loops
in DSPLs [1], [15]. This will enable other software engineers
to apply these evolution ideas to their MAPE-K DSPL.

A. Smart Hotel Variability Modeling

In the Smart Hotel DSPL, the variability model is ex-
pressed through a feature model. The architecture model
is defined using a DSL. The realization layer defines the
connection between the variability model and the architec-
ture model [16], [17]. Finally, the output system is obtained
through a model (DSL) to text (Java code) transformation.

Feature models describe the common and variable char-
acteristics of a system [18]. In feature models, features are
hierarchically linked in a tree-like structure through variabil-
ity relationships (optional, mandatory, or single choice), and

are optionally connected by cross-tree constraints (requires
or excludes). Our feature model represents all of the different
features that the Smart Hotel has implemented.

A feature model contains the set of all features (selected
or unselected). A Running Configuration (RC) of a system
is defined as the set of all selected features in its feature
model at a given time. The subset of the Feature Model in
Figure 1 shows a small part of the entire Smart Hotel. The
grey features represent the running features of the Smart
Hotel, while the white features represent potential variants
since they may be activated in the future. For instance, the
system can potentially be upgraded with a Gradual lighting.

Although a feature model can represent commonalities
and variabilities in a very concise taxonomic form, features
in a feature model are merely placeholders. We use a
weaving model as the realization layer, that is, for map-
ping features to architecture model elements. The weaving
model expresses a link between a feature model and model
elements. This weaving approach enables us to configure
architecture models from a set of given features.

We use Pervasive Modelling Language (PervML) [19] to
describe the Smart Hotel. PervML is a DSL that describes
pervasive systems using high-level abstraction concepts
based on Meta-Object Facility (MOF) [20]. However, other
MOF-based DSLs for other domains can be used equally
well with our approach.

Due to space constraints, in this work, we only focus on
the subset of PervML that specifies the relationships among
devices and services. This subset specifies the components
that define a particular system (services and devices) and
how these components are connected with each other (chan-
nels). Services are depicted by circles, devices are depicted
by squares, and the channels connecting services and devices
are depicted by lines (see Figure 1 PervML Model).

B. DSPL Reconfiguration Loop: MoRE (Model-based Re-
configuration Engine)

Control loops have been identified as essential elements
to realize the adaptation of software systems. IBM suggested
a reference model for autonomic control loops [2], which is

C1

D
es

ig
n
-t

im
e

Evolution

Evolution Strategy
running
models

newly developed
models

Software
engineer

Version 1 Models
C1

C2

Software
engineer

Version 2 Models

C3

C4

A
M K Version 1

P
E

C2

A
M K Version 1

P
E

A
M K Version 2

P
E

A
M K Version 2

P
E

ReconfigurationInitial deployment Reconfiguration
R
u
n
-t

im
e

initial
deployment

C2 C1 C1 C4

Figure 2. Operations of the DSPL.

called MAPE-K loop. This loop is very useful to researchers
that work on run-time variability to make their systems
autonomous. The adaptation is based on models (the K
element), which means that models are present at run-time
[1]. To enable autonomic behaviour, the system must change
from one configuration to another by itself. These changes
are then translated into reconfiguration actions that modify
the system components accordingly.

We use an implementation of the MAPE-K loop called
Model-based Reconfiguration Engine (MoRE) [14]. MoRE
translates context changes into changes in the activa-
tion/deactivation of features. These changes are then trans-
lated into the reconfiguration actions that modify the system
components accordingly.

In the previous section, we have presented the variability
model and the architecture model that MoRE uses as Knowl-
edge (K) to switch between configurations (see Figure 1 (c)).
That is, the Smart Hotel DSPL knowledge is composed by
the feature model and the PervML architecture model. In
MoRE, the Monitor (M) uses the run-time state as input
to check context conditions. If any of these conditions are
fulfilled, the Analyzer (A) uses the associated resolution
and the previous model operations to query the run-time
models about the necessary modifications. The response
of the models is used by the Planner (P) to elaborate
a reconfiguration plan. This plan contains reconfiguration
actions, which modify the system architecture and maintain
the consistency between the models and the architecture. The
Execution (E) of this plan modifies the architecture in order
to activate/deactivate the features specified in the resolution.

The reconfiguration of the system is performed by execut-
ing reconfiguration actions that deal with the activation and
deactivation of components and the creation and destruction
of channels among components. For example, the Java vir-

tual machine allows loading and unloading code dynamically
and component platforms allow loading, connecting and
disconnecting component instances.

The feature model specifies the possible configurations
of the system, while the PervML architecture model can
be rapidly retargeted to a specific configuration in response
to changes in the context. MoRE calculates the architecture
increments and decrements in order to determine the actions
necessary to modify the system architecture. These opera-
tions take a feature resolution as input, and they calculate
the modifications to the architecture in terms of devices,
services, and channels.

Moreover, it is absolutely necessary to have a way to
analyze the reconfigurations before performing them. MoRE
validates the configurations resulting from the simultane-
ous fulfillment of context events at design-time. There-
fore, unexpected configurations can be avoided. Specifically,
MoRE analyzes variability models by means of the FAMA
framework [21] for variability analysis. FAMA framework
integrates some of the most commonly used logic representa-
tions and solvers proposed in the literature. This framework
enables to determine if a system configuration is valid, and
it can also provide explanations about invalid configurations.

III. OUR EVOLUTION STRATEGY

Figure 2 shows the operation of the DSPL presented. The
upper part depicts the actions performed at design-time by
software engineers while the lower part shows the impact
that those actions have on the running DSPL.

The first column presents the initial deployment of the
DSPL; the first versions of the models are created by the
software engineer (the upper part). The initial deployment
of the DSPL is performed using those models. The lower
part of the first column shows how the DSPL is conformed

C1

C3

C4

C5

C6C1

C3

C0

C2

C4

Configuration
space Vi

Configuration
space Vi+1

Variability
models Vi+1

C1

C3

C1

C3

C0

C2

C4

C5

C6C4

Configuration
space Vi

Configuration
space Vi+1

Variability
models Vi+1

A
M K

P
E

C2

A
M K

P
E

C3

C1

C3

C4

C5

C6C1

C3

C0

C2

C4

Configuration
space Vi

Configuration
space Vi+1

Variability
models Vi+1

A
M K

P
E

C3

Running
Configuration

Running
Configuration

Running
Configuration

Evolution from
DSPL Models Vi

to DSPL Models Vi+1
RC ∈ Vi+1

Yes

Update with the New Models

C1

C3

C4

C5

C6

Vi Vi+1 =
No

Yes

Evolution through Reconfigurations

C1

C3

C0

C2

C4

C5

C6

No Restarting Evolution

Vi Vi+1 =

Figure 3. Different Evolution Scenarios.

with the MAPE-K loop. The DSPL can be reconfigured at
run-time by hot-swapping existing components.

In the second column of Figure 2, the system is recon-
figured and starts using a configuration described by the
variability knowledge that is different from the original one
(in this case, a shift from Configuration 2 (C2) towards
Configuration 1 (C1)). This reconfiguration is performed at
run-time; an event from the physical world triggers the use
of a new configuration. For example, in the Smart Hotel,
C1 is the configuration when a room is empty (i.e., the
sensor of the room are used for security purposes). When
the client of the hotel enters in the room, MoRE performs
the reconfiguration and changes from C1 to C2 that is when
the client is in the room (i.e., the sensors of the room are
used for illumination purposes).

The third column presents an example of evolution of
the DSPL. The software engineer creates the new models
(the top part of third column). Our strategy is used to
translate those changes to the running DSPL. The current
DSPL (Version 1) will be evolved with the new DSPL
(Version 2) as indicated by the strategy in order to modify
the running DSPL without suspending its execution. That is,
some of the configurations are added and some others are
removed without stopping the system. When a configuration
is modified, we assume that the configuration has been
removed and a new configuration has been added.

After the evolution, the system can perform new recon-
figurations. In the fourth column of Figure 2, the system is

reconfigured from Configuration 1 (C1) to Configuration 4
(C4). The system is able to reach configurations of the new
version of the models.

This work focuses on the knowledge evolution of a
DSPL. We consider evolution to be the integration of newly
developed components without having to stop the system.

We show the evolution by means of the configuration
space that is defined by the models. A configuration space is
composed of a set of configurations and transitions between
configurations. Each of the configurations is composed of
a set of active features defined in the variability model. In
turn, an active feature is related to a set of architecture model
elements by means of a realization layer. The system source
code is obtained through a model to text transformation
taking as input the complete architecture model.

Our evolution starts with a design-time evolution when
the software engineer develops a new configuration space
at design-time. In our case, the design-time evolution is the
enabler for the DSPL knowledge evolution [22].

Once the evolution at design-time is developed by the
software engineer, our strategy allows the run-time activation
of the new configurations without having to stop the system.
Our strategy distinguishes between three main scenarios.

A. Evolution scenarios

Figure 3 depicts the different evolution scenarios. The
software engineer develops a new variability model which
defines a new configuration space. We distinguish three

scenarios taking into account the current configuration space,
the newly developed configuration space, and the running
configuration.

In the first case, there is an intersection between the two
configuration spaces, that is, some configurations belong to
both. In addition, in the first case, the running configuration
belongs to this intersection (i.e., the running configuration
belongs to both configuration spaces). Hence, the running
configuration is also in the new configuration space.

When this case occurs, our strategy performs an Update.
An update requires the evolution of the model elements that
are not involved in the running configuration. Our strategy
removes the old configurations and adds the new ones.

The first column in Figure 3 shows an update when the
running configuration is C3. Configuration C3 is in version
Vi models and in version Vi+1 models; hence, C3 is in the
new version. The resultant configuration space only contains
the configurations of version Vi+1 (C1, C3, C4, C5, and C6).

In the second case, there is also an intersection between
the two configuration spaces. However, the running con-
figuration does not belong to this intersection, that is, the
running configuration is not part of the new version of the
configuration space. The running configuration is only in the
old version of the configuration space.

In this scenario, our strategy performs an Evolution
through Reconfigurations. Our strategy composes the old
configuration space with the new configuration space. The
old version is used in a transient period until a configuration
of the new version is reached. In other words, the two
versions coexist until the running configuration reaches a
configuration of the new version, which allows the safe
removal of the old version of the configuration space.

The second column in Figure 3 shows the evolution when
the running configuration is C2. Configuration C2 is not
present in version Vi+1 models. The resultant configuration
space is a composition of the old configurations (C0, C1,
C2, C3, and C4) with the new configurations (C1, C3, C4,
C5, and C6). This is only a transient situation; the final
configuration space only maintain the new configurations
(C1, C3, C4, C5, and C6).

The third column in Figure 3 shows that there is no
intersection between the two configuration spaces. Hence,
the strategy cannot reach the new configuration space; there
are no transitions between old configurations and new con-
figurations. Therefore, our strategy is not able to perform
an automatic evolution without stopping the system. This
scenario needs a Restarting Evolution.

B. The special case of a bug

This evolution also allows some configurations to be
blocked. For example, if a serious bug has been spotted in
the running version and some of its configurations should
be avoided (also in the transient situation), the software

engineer can develop a new configuration space without the
configuration that contains the bug.

Configuration
space Vi+1

C1

C3

C4

C5

C6

Configuration
space Vi

C1

C3

C0

C2

C4

Configuration space
(Intermediate version

without the bug configuration)

C1

C3

C0 C4

Direct
Evolution

Evolution
blocking

the erroneous
configuration

Evolution
to Vi+1

Figure 4. Example of the Special Case of a Bug.

In the same way as in the evolution scenarios, if the
erroneous configuration is not running, our strategy simply
performs an Update discarding the erroneous configuration.
However, if the erroneous configuration is running, our
strategy performs an Evolution through Reconfigurations.
Once the system leaves the erroneous configuration, the
system cannot return to it. This is how the system eliminates
the bug.

In the example of Figure 4, the software engineer wants
to evolve the DSPL from version Vi models to version
Vi+1 models. However, there is a bug in configuration C2.
Instead of performing the evolution directly from version
Vi to version Vi+1, the best way to block the erroneous
configuration, C2, is to develop an intermediate version of
the configuration space that does not contain this erroneous
configuration. Then, the first evolution is from version Vi to
the intermediate version. Our strategy applies one kind of
evolution or the other depending on the configuration that
is running.

Once this intermediate evolution is performed, the config-
uration that contains the bug has been removed. Thus, the
system is prevented from repeatedly reaching the erroneous
configuration. Finally, another evolution from the interme-
diate version to the version Vi+1 is needed to achieve the
desired configuration space.

IV. MODEL OPERATIONS TO REALIZE THE EVOLUTION
STRATEGY

This section introduces the model operations of our
evolution strategy. The evolution starts when the software
engineer develops the new version of the models at design-
time. These new models define the new configuration space.
Then, our strategy evolves the configuration space of the
Smart Hotel DSPL. The strategy takes as input the new
version of the models developed at run-time and the running
models of the Smart Hotel.

D
e
si
g
n
-t
im
e

R
u
n
-t
im
e

Feature Model Composi�on

output

input

Composed Feature model

Temperature
Control

Hea�ng

Smart Hotel

Automated
illumina�on

Alarm

Security

Visual
Alarm

Siren Blinking
Light

Version Vi+1 of
Feature model

Running
Feature model

Feature Model Composi�on Realiza�on Layer Crea�on

Composed Feature model with Collision Tags

Temperature
Control

Hea�ng

Smart Hotel

Automated
illumina�on

Alarm

Security

Visual
Alarm

Siren Blinking
Light

FF

F

F

A

A S

S

Architecture Model Merging

Merged Architecture model

Security Service

Illumina�on Service

a

c d

f

Siren

Visual
Alarm

Alarm

Lights
21

6

8

5.13

Temperature
Service g

Hea�ng Service9 10

e

Blinking
Lights

7

Subset the Running
PervML model

Subset of Version Vi+1
of PervML model

Feature Superimposi�on

output

Model Merging

input input

output

Fe
at

u
re

 M
o

d
el

A
rc

h
it

ec
tu

re
 M

o
d

el

input

Op�onal

Mandatory

Mul�ple Choice

Device

Service

Channel

Smart Hotel

Automated
illumina�on

Temperature
Control

(9)

Hea�ng
(g,10)

Visual Alarm
(f,8)

Smart Hotel Room

Automated
Ilumina�on

(1.1,a’,2)

Alarm
(5.1)

Security
(3,c)

Siren
(d,6)

Smart Hotel

Version Vi+1

Automated
illumina�on

Version Vi

Alarm

5.1

c
3

Security
Service

f

Visual
Alarm

8

Type Feature Model
element

Free

Signature

Architecture
not-running

Architecture
running

Visual
Alarm

Security

Alarm

Automated
illumina�on

Illumina�on Service

a
Lights

21

Version Vi Version Vi+1

Version Vi

C1

C3

C0

C2

C4

Version Vi+1

C1

C3

C4

C5

C6
C

o
n
fi

gu
ra
�

o
n

 S
p

ac
e

Security Service

Ilumina�on
Service

a’

c d

f

Siren

Visual
Alarm

Alarm

Lights
21.1

6

8

5.13

Temperature
Service

g
Hea�ng Service9 10

Illumina�on
ServiceIllumina�on

Service

Figure 5. Evolution of the Smart Hotel

A. Design-time Evolution

This section shows the evolution of a Smart Hotel DSPL
example performed by the software engineer at design-time.
The upper part of Figure 5 depicts the model versions and
the evolutions performed at design-time. Figure 5 shows the
configuration space, the DSPL Feature Model, and the DSPL
PervML Model. The information in brackets after the name
of each element in the feature model corresponds to the links
to the architecture model.

The upper part of Figure 5 shows the changes performed
by the software engineer at design-time over the config-
uration space, the variability model, and the architecture

model. Version Vi shows the first version of the Smart
Hotel models. In this small example, the Smart Hotel has
two services, automated illumination and security services.
The automated illumination feature enables lights to be
automatically controlled. The security service is used to alert
people of critical notifications such as fire or water leaks in
the room. The security service can have a traditional audible
alarm or blinking lights.

Version Vi+1 of Figure 5 shows the new models created
by software engineers. They create the temperature control
service, which takes into account the occupancy of the
room and the actual temperature in order to adjust the
heating system. They also change the blinking light alarm

feature to the visual alarm feature. If any critical situation
occurs, the visual alarm shows a message with instructions;
therefore, the visual alarm shows necessary information that
the blinking lights do not show.

B. DSPL Knowledge Evolution at Run-time

Our strategy distinguishes three scenarios to perform the
evolution. In the Update evolution, the running models are
changed for the new ones. An update requires the evolution
of the model elements that are not involved in the running
configuration. Our strategy removes the old configurations
and adds the new version of the configuration space.

In the Evolution through Reconfigurations scenario, our
strategy has a transient situation before reaching the final
configuration space. The transient situation is formed by a
composition of the new models developed at design-time
and the running models of the DSPL.

To get the transient situation, our strategy composes the
new version of the feature model and the running feature
model, and merges the new version of the architecture
model and the running architecture model. A new realization
layer is created to map each feature with the architecture
elements that are related to it. Our strategy implements this
composition of the models as indicated below.

1) Feature Model Composition: Our strategy combines
the running feature model and the new version of the
feature model to produce the new version of the running
feature model. This composed feature model specifies con-
figurations that may be reached after the DSPL knowledge
evolution. To do the variability composition, our strategy ex-
tends the Reference-based and Slicing composition process
implemented in [23].

The composition process consists of two main phases: (1)
the matching phase identifies model elements that describe
the same concepts in the input models; (2) the merging phase
groups the matched elements together to create new elements
in the resulting model. We chose the hybrid implementation,
Reference-Based and Slicing presented in [23], because it is
the most customizable implementation in their study.

The key idea of Reference-Based implementation is to
build a separate feature model that contains features with
the same names as the input feature models. The features
are then related to input features through a set of logical
constraints. We use Slicing to eliminate internal variables,
which are needed to perform the composition (because they
increase the computational time). The result is a feature
model that joins the input variability models and the con-
straints.

Since conflicts between constraints from different versions
of the feature model can occur, our strategy is driven by
configuration semantics (the architecture configuration set
of the composed variability model is the union of the archi-
tecture configuration sets of the input variability models).
However, our current implementation of the strategy does

not take into account ontological semantics to determine
the most appropriate variability hierarchy. Given a set of
configurations, there still exist different candidate variability
models with other different hierarchies [18].

The Feature Model Composition in Figure 5 depicts an
example of the feature model composition of our Smart
Hotel example. The inputs of the composition are the
running feature model and the version Vi+1 of the feature
model developed by the software engineer. The output of
the operation is the composed feature model (see Figure 5
lower part).

2) Realization Layer Creation: In order to link the
composed variability model to the architecture model, the
strategy generates a new realization layer. The realization
layer creates a link between features and architecture model
elements. In the feature model composition, some collisions
between features can occur if the features are not unique. In
our case, a feature is not unique when in the composition
there is another feature with the same signature. Our strategy
only considers the name property of a feature model element
as signature. In other words, two features match if they have
the same name property.

We follow a set of rules to create the realization layer
depending on the collisions among features detected during
the matching phase of the feature model composition. A
collision depends on the uniqueness of the features. To dis-
tinguish the type of collision, we extend our implementation
of the feature model composition to add a tag to each feature.

• A feature of type free (F) means no collision, the
feature is only found in one of the feature models.

• A feature of type signature (S) means a collision of
the features, where their references to the architecture
model are the same. In other words, there are two
features (one in each feature model) with the same sig-
nature, where the model architecture elements related
to them are the same for both features.

• A feature of type architecture (A) means a collision
of the features and of the architecture model elements
related to them (i.e., the architecture elements related
to these features are different).

The composed feature model in the realization layer
creation column of Figure 5 shows the features and the type
of each feature.

The creation of the realization layer follows one rule
with each type of feature. For features of type free (F)
and signature (S), our strategy holds the current architecture
elements related to them. This is because there are no
collisions in the architecture elements related to the features.

For features of type architecture (A), we differentiate
two cases. For active features (involved in the running
configuration), our strategy keeps the architecture elements
denoted by the run-time variability model before the DSPL
knowledge evolution. For inactive features (those not in-
volved in the running configuration), our strategy updates

the architecture elements with the new ones that come from
the new variability model of the design-time.

The realization layer creation column of Figure 5 shows
the different types of features and the model elements
associated with each one after creating the realization layer.
For example, the illumination service and the alarm have
changed in the new version of the architecture model (see
Figure 5, upper part). However, since the illumination ser-
vice is active in the running configuration, the architecture
model related to this feature remains unchanged. In contrast,
the alarm is changed to the new version because it does not
belong to the running configuration; it is inactive.

3) Architecture model merging: Finally, our strategy
merges the architecture models that are driven by the re-
alization layer. It performs the superimposition operation
(�) [14] over the variability model. The superimposition
takes a feature and returns the set of architecture model
elements that are related to this feature. The result is a
subset of the running architecture model and another subset
of the new version of the architecture model. These two
subsets are merged to create the new version of the running
architecture model. Our strategy uses a signature-based
model composition [24] to achieve the merging.

The model merging is structured in two phases, the match-
ing phase and the merging phase. In the matching phase,
model elements that are described in different models are
identified. In the merging phase, matched model elements
are merged to create a new model element.

To support automated element matching, each element
is associated with a signature type that determines the
uniqueness of each element. Two elements with equivalent
signatures cannot coexist in a model. Our strategy only
considers the name property of a model element as signature.
In other words, two elements match if they have the same
name property.

The merged model contains the union of the model ele-
ments in the source models; matching elements are included
only once in the merged model. The new version of the
running architecture model in Figure 5 shows an example
of a merge model.

The superimposition operator (�) [14] is used to query
a realization layer to identify which architecture model ele-
ments support a certain feature. The superimposition takes a
feature and returns the set of components and channels that
are related to this feature. By means of the superimposition
operation, it is possible to project a particular feature to the
architecture components.

Our strategy performs the superimposition operation tak-
ing the composed feature model. This operation returns dif-
ferent model elements to support all possible feature model
configurations. These elements are matched and merged as
a result of the composed model.

The resultant models are only a transition. Once our
reconfiguration engine reaches a new configuration, our

strategy removes the old elements. The final models only
contain elements of the new version. Therefore, the system
can only reach configurations belonging to the new version.

V. VALIDATION OF THE DSPL KNOWLEDGE EVOLUTION
OF THE SMART HOTEL

In this section we aim to show the applicability of our
evolution strategy, by showing that it can support in practice
the evolution of a Smart Hotel DSPL. We do not focus on
computational complexity or scalability because these are
properties that emerge from the choice of expressive power
of the language used to express the variability and the choice
of the reconfiguration loop implementation.

We conducted a validation of our strategy using a Smart
Hotel case study. The Smart Hotel used in the previous
sections to explain our strategy is a subset of the real Smart
Hotel that we used in this validation. This Smart Hotel was
developed previously [14]. The Smart Hotel reconfigures its
services according to changes in the surrounding context. A
hotel room changes its features depending on users activities
to make their stay as pleasant as possible.

According to the feature model, the Smart Hotel presents
thirty-nine features and six cross-tree constraints. The main
concepts of the Smart Hotel DSPL architecture are services,
devices, and the communication channels among them. The
Smart Hotel has thirteen services, twenty devices and thirty-
five channels. That is, the configuration space of the Smart
Hotel has 239 possible configurations.

We defined the experimental design of our study using the
Goal-Question-Metric method (GQM) [25] and its template
[26]. The GQM method was defined as a mechanism for
defining and interpreting a set of operation goals using mea-
surements. In this experiment, our goal was the following:

• Object : Our Smart Hotel DSPL
• Purpose: Validation
• Issue: The applicability of the automatic evolution

strategy
• Context: Evolution of the DSPL architecture variability

knowledge
To fulfill this goal, we focused on answering this research

question: Do the scenarios of our strategy cover the evolution
of the Smart Hotel DSPLs?

Basili [25] and Travassos [27] describe four kinds of
studies: in-vivo, in-vitro, in-virtuo, and in-silico. In our case,
we chose to carry out in-silico experiments, where subjects
and the real world are described as computer models. The
environment was composed entirely of computer models,
with which human interaction was reduced to a minimum.
This offers major advantages regarding the cost and the fea-
sibility of replicating a real-world configuration. In addition,
some scenarios such as fires or floods cannot be replicated
in the real world.

Moreover, we simulated the evolution by means of a
simulation approach for exploring the effects of product line

Evolution Strategy

Evolution
Simulator

Loop

A
M

K Vi

P
E

Running
configuration

K Evolved

A
M

K Vi+1

P
E

Running
configuration

Figure 6. Evaluation Steps.

evolution [28]. The simulator tool allows generating random
models based on product line profiles.

The evolution profiles are Product line refactoring that
leads to the adaptation of existing components or the devel-
opment of new ones, Product placement that changes the
problem space to allow different configurations of the ex-
isting components, without changing them, and Continuous
evolution that is subject to continuous changes in both spaces
by adding/removing components or reorganizing decisions.

We implemented the above evolution profiles in a Evolu-
tion Simulator. This Evolution Simulator is based on Ecore-
mutator [29], which is an EMF-based framework to mutate
EMF models that conform to an Ecore metamodel. In partic-
ular, we implemented custom mutators that, given a model
as input, add, remove or modify model elements according
to each evolution profile. Our Evolution Simulator randomly
chooses which evolution profile of the ones presented in this
section is going to be applied.

Figure 6 shows the steps followed in this evaluation.
The Evolution Simulator takes one version of the models
as input and returns an evolved version of these models.
Next, our evolution strategy performs the DSPL knowledge
evolution. The input for the strategy was the running models
and the new version of the evolved models developed
in the Evolution Simulator. The output of the strategy is
an evolved DSPL knowledge placed on the reconfigurable
system. We performed simulations until all evolution profiles
were covered.

For example, in the first evolution, the Evolution Sim-
ulator took as input the first version of the Smart Hotel
DSPL (239 configurations). The new version of these models
(output of Evolution Simulator) had forty-two features in

the feature model, fifteen services, twenty-four devices, and
forty-five channels in the architecture model and 242 poten-
tial configurations in the configuration space. This evolution
profile corresponded to a Continuous evolution because five
new configurations were added, two old configurations were
removed and six of the old ones were modified.

Next, our evolution strategy evolved the models from
the Smart Hotel DSPL. Our strategy took as input the
new version of the models. As the running configuration
was not in the configuration space of the new version of
the models, the evolution was performed by an Evolution
through Reconfigurations. Finally, the Smart Hotel DSPL
could reach 242 different configurations with the new version
of the models instead of the 239 configurations that the Smart
Hotel DSPL could reach with the previous models.

A. Scenarios covered by the strategy

After analysing the data obtained from the evolutions,
we obtain that in 1 out of 4 cases of the evolutions, the
running configuration remains in the configuration space of
the new version of the models. The strategy can perform
a direct Update scenario without interrupting the running
configuration.

In 2 out of 3 cases of the evolutions, the running con-
figuration does not belong to the configuration space of the
new version of the models. The strategy is able to find a
way from the running configuration to reach a configuration
that belongs to the configuration space of the new version
of the models. Hence, the strategy performs an Evolution
through Reconfigurations scenario.

However, in 1 out of 10 cases of the evolutions, the
strategy cannot find a way to reach a configuration that
belongs to the configuration space of the new version of the
models. The system cannot be evolved with our automatic
strategy and must be stopped to perform the evolution.

We have observed that the models corresponding to this
1 out of 10 cases that cannot be evolved automatically are
models that differ greatly from each other. The Restarting
scenario is required when none of the old configurations
are retained in the new version of the configuration space.
In a no simulated environment, the evolution of a system
in which all of the configurations change without keeping
at least one old configuration in the new version is very
uncommon. Although it has occurred in an exhaustive sim-
ulation, it means not having in common any of those 239

configurations between the old and the new version.

B. Threats to Validity

Our validation exhibits some applicability. Regarding the
generalization, our results and findings are based on a single
DSPL in the domain of the Smart Hotels. However, given
the scale and complexity of our Smart Hotel (thirty-nine
features, thirteen services, twenty devices, and thirty-five

channels in the PervML model and 239 possible configura-
tions in the configuration space), we consider our validation
a good starting point representing a realistic case.

Furthermore, the election of the Smart Hotel DSPL for the
validation was motivated because the Smart Hotel adheres
to the the core ideas of DSPLs such as MAPE-K loop
and architecture variability knowledge [1]. Although, the
evolution strategy was validated by means of the Smart hotel,
the ideas of the evolution strategy are general and they can
be applied to other DSLPs which are base on MAPE-K loop
and architecture variability knowledge.

Concerning the evaluation runs, our validation may not
seem sufficient for a continuously operating system. How-
ever, each run covers one complete continuous life-cycle of
the system.

Finally, to ensure the validity of the case study, the
validation was done by a student in his last year of his master
as part of his master’s thesis. The participation of the authors
of the strategy was limited to explaining the operation of
the strategy so that the student could correctly perform the
validation. This student was responsible for developing the
Evolution Simulator and for conducting the validation with
the Smart Hotel case study. Thus, we have achieved that the
validation was independent of the main research.

VI. RELATED WORK

Hallsteinsen et al. [11] develop the MUSIC framework.
MUSIC supports the dynamic addition and removal of
components and service variants, as well as compositions
with their own set of model fragments that describe internal
variability. Their evolution is focused on software by means
of developing new software bundles. However, their evolu-
tion must be performed manually by a software engineer,
while our evolution strategy allows an automatic evolution.

Pascual et al. [30] present an approach that provides sup-
port for the dynamic reconfiguration of mobile applications,
optimizing their architectural configuration according to the
available resources. They model the variability of the ap-
plication’s software architecture using Common Variability
Language (CVL) [16] while we use a feature model and a
Domain Specific Language (DSL) to express the variability.
They evolution is performed thought a genetic algorithm
whilst we develop different operation (i.e., feature model
composition or model merging) for each one of the models.

Perrouin et al. [31] use a MAPE loop to manage another
MAPE loop. Their approach not only adapts the system, it
also adapts both its adaptation mechanism and its adaptation
policies. They define a dynamically reconfigurable adapta-
tion loop. The dynamic reconfiguration of this adaptation
loop is achieved by employing adaptation techniques that
are similar to the ones used to adapt the system itself. They
focus on evolving adaptation rules or reconfiguration scripts,
while we focus our work on DSPL knowledge evolution that
incorporates knowledge from new versions of design-time

models into run-time models. The combination of the two
approaches may improve current DSPL implementations.

Hussein et al. [32] develop an approach to enable the
run-time evolution of context-aware adaptive services. Their
approach captures a service’s model from three aspects:
functionality, context, and adaptive behaviour. Thus, these
aspects and their relationships can be captured and manipu-
lated at run-time. With this approach, the software engineer
can perform the service’s run-time changes at the modelling
level. However, they compute the differences between the
evolved model and the initial model and generate adaptation
actions. Then, this actions are applied to the service’s run-
time artifacts. We take into account the run-time model and
the run-time configuration to apply our strategy, hence we
only need to perform adaptation action when the running
configuration does not allow the evolution.

Capilla et al. [15] provides an overview of the state of the
art and current techniques that face the challenges of run-
time variability in the context of Dynamic Software Product
Lines. They propose a solution for the automation of changes
in the structural variability (i.e., adding or removing features
at run-time). They use the notion of super-types [33], [34]
while we use the feature model composition. In addition,
they propose some techniques to check the feature model
and the configuration model [21], [35], [36] once they are
modified. These techniques could be applied to our strategy
in the future to ensure that the evolved models are valid.

VII. CONCLUSIONS

This work addresses the knowledge evolution of DSPLs
by means of the configuration space of a DSPL. Specifically,
our evolution strategy distinguishes three main scenarios tak-
ing into account the running configuration. In addition, our
strategy solves the collision between components resulting
from the evolution. Finally, the system evolves automatically
thus enabling the DSPL to reach new configurations.

The proposed automatic evolution strategy is not restricted
to the case study we have chosen to evaluate, it can also be
applied to a wide range of DSPL domains. The ideas of
the evolution strategy can be applied to the most common
infrastructure of DSLPs [1], which combines MAPE-K loop
and architecture variability knowledge.

In this paper, we have validated the benefits of performing
the evolution automatically. The validation of our strategy
in the Smart Hotel DSPL has shown promising results in 9
out of 10 cases, which confirm the potential of applying our
automatic evolution strategy.

In the near future, we would like to explore automatic
evolution in other kinds of systems with other types of vari-
ability management, such as systems that use the Common
Variability Language (CVL) [16]. We plan to investigate an
automatic evolution that covers the maximum number of
possible cases.

REFERENCES

[1] N. Bencomo, S. O. Hallsteinsen, and E. S. de Almeida, “A
view of the dynamic software product line landscape,” IEEE
Computer, vol. 45, no. 10, pp. 36–41, Oct 2012.

[2] IBM, “An architectural blueprint for autonomic computing,”
IBM, Tech. Rep., 2006.

[3] A. Helleboogh, D. Weyns, K. Schmid, T. Holvoet,
K. Schelfthout, and W. V. Betsbrugge, “Adding variants
on-the-fly: Modeling meta-variability in dynamic software
product lines,” in Proceedings of the 3rd International Work-
shop on Dynamic Software Product Lines (DSPL ’09), San
Francisco, California, USA, Aug 2009, pp. 19–27.

[4] G. H. Alfrez and V. Pelechano, “Context-aware autonomous
web services in software product lines,” in Proceedings of the
15th International Software Product Line Conference (SPLC
’11), Munich, Germany, Aug 2011, pp. 100–109.

[5] M. Kim, J. Kim, and S. Park, “Tool support for quality
evaluation and feature selection to achieve dynamic quality
requirements change in product lines,” in Proceedings of the
2nd International Workshop on Dynamic Software Product
Lines (DSPL ’08), Limerick, Ireland, Sep 2008, pp. 69–78.

[6] S. Hallsteinsen, S. Jiang, and R. Sanders, “Dynamic software
product lines in service oriented computing,” in Proceedings
of the 3rd International Workshop on Dynamic Software
Product Lines (DSPL ’09), San Francisco, California, USA,
Aug 2009, pp. 28–34.

[7] H. Shokry and M. A. Babar, “Dynamic software product line
architectures using service-based computing for automotive
systems,” in Proceedings of the 2nd International Workshop
on Dynamic Software Product Lines (DSPL ’08), Limerick,
Ireland, Sep 2008, pp. 53–58.

[8] R. Ali, R. Chitchyan, and P. Giorgini, “Context for goal-
level product line derivation,” in Proceedings of the 3rd
International Workshop on Dynamic Software Product Lines
(DSPL ’09), San Francisco, California, USA, Aug 2009, pp.
8–17.

[9] J. Lee, J. Whittle, and O. Storz, “Bio-inspired mechanisms
for coordinating multiple instances of a service feature in
dynamic software product lines,” The Journal of Universal
Computer Science, vol. 17, no. 5, pp. 670–683, 2011.

[10] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Designing
and prototyping dynamic software product lines: Techniques
and guidelines,” in Proceedings of the 14th International
Software Product Line Conference (SPLC ’10), Jeju Island,
South Korea, Sep 2010, pp. 331–345.

[11] S. O. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen,
G. Horn, J. Lorenzo, A. Mamelli, and G. A. Papadopoulos, “A
development framework and methodology for self-adapting
applications in ubiquitous computing environments,” Journal
of Systems and Software, vol. 85, no. 12, pp. 2840–2859, Dec
2012.

[12] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Autonomic
computing through reuse of variability models at runtime: The
case of smart homes,” IEEE Computer, vol. 42, no. 10, pp.
37–43, Oct 2009.

[13] M. Hinchey, S. Park, and K. Schmid, “Building dynamic
software product lines,” IEEE Computer, vol. 45, no. 10, pp.
22–26, Oct 2012.

[14] C. Cetina, “Achieving autonomic computing through the
use of variability models at run-time,” Ph.D. dissertation,
Universidad Politcnica de Valencia, 2010.

[15] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and
M. Hinchey, “An overview of dynamic software product line
architectures and techniques: Observations from research and
industry,” Journal of Systems and Software, vol. 91, pp. 3–23,
May 2014.

[16] Ø. Haugen, B. Mller-Pedersen, J. Oldevik, G. K. Olsen,
and A. Svendsen, “Adding standardized variability to domain
specific languages,” in Proceedings of the 12th International
Software Product Line Conference (SPLC ’08), Limerick,
Ireland, Sep 2008, pp. 139–148.

[17] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey, y. Hau-
gen, B. Mller-Pedersen, and G. K. Olsen, “Developing a
software product line for train control: A case study of cvl,” in
Proceedings of the 14th International Conference on Software
Product Lines (SPLC ’10), Jeju Island, South Korea, Sep
2010, pp. 106–120.

[18] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki,
“Reverse engineering feature models,” in Proceedings of
the 33rd International Conference on Software Engineering
(ICSE ’11), Waikiki, Honolulu , HI, USA, May 2011, pp.
461–470.

[19] J. Muoz, “Model driven development of pervasive systems.
building a software factory,” Ph.D. dissertation, Universidad
Politcnica de Valencia, 2008.

[20] “Meta object facility (mof), 2.0 core specification,” 2003,
version 2.

[21] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated
reasoning on feature models,” in Proceedings of the 17th
International Conference on Advanced Information Systems
Engineering (CAiSE ’05), Porto, Portugal, Jun 2005, pp. 491–
503.

[22] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel,
“Towards a taxonomy of software change: Research articles,”
Journal of Software Maintenance and Evolution: Research
and Practice - Unanticipated Software Evolution, vol. 17,
no. 5, pp. 309–332, Sep 2003.

[23] M. Acher, B. Combemale, P. Collet, O. Barais, P. Lahire, and
R. France, “Composing your compositions of variability mod-
els,” in Model-Driven Engineering Languages and Systems,
ser. Lecture Notes in Computer Science, A. Moreira, B. Schtz,
J. Gray, A. Vallecillo, and P. Clarke, Eds. Springer Berlin
Heidelberg, 2013, vol. 8107, pp. 352–369.

[24] R. B. France, F. Fleurey, R. Reddy, B. Baudry, and S. Ghosh,
“Providing support for model composition in metamodels,”
in Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC ’07), An-
napolis, Maryland, USA, Oct 2007, pp. 253–266.

[25] V. R. Basili, “The role of experimentation in software en-
gineering: Past, current, and future,” Berlin, Germany, Mar
1996, pp. 442–449.

[26] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal
question metric approach,” in Encyclopedia of Software En-
gineering. John Wiley & Sons, 1994.

[27] G. H. Travassos and M. de Oliveira Barros, “Contributions of
in virtuo and in silico experiments for the future of empirical
studies in software engineering,” in Proceedings of the ESEIW
2003 Workshop on Empirical Studies in Software Engineering
(WSESE ’03), Roman Castles, Italy, Sep 2003.

[28] W. Heider, R. Froschauer, P. Grnbacher, R. Rabiser, and
D. Dhungana, “Simulating evolution in model-based prod-
uct line engineering,” Information and Software Technology,
vol. 52, no. 7, pp. 758–769, Jul 2010.

[29] “Eclipse foundation, ecore-mutator.” [Online]. Available:
https://code.google.com/a/eclipselabs.org/p/ecore-mutator/

[30] G. G. Pascual, R. E. Lopez-Herrejon, M. Pinto, L. Fuentes,
and A. Egyed, “Applying multiobjective evolutionary algo-
rithms to dynamic software product lines for reconfiguring
mobile applications,” Journal of Systems and Software, vol.
103, pp. 392–411, May 2015.

[31] G. Perrouin, B. Morin, F. Chauvel, F. Fleurey, J. Klein,
Y. Le Traon, O. Barais, and J. M. Jezequel, “Towards flexible
evolution of dynamically adaptive systems,” in Proceedings
of the 34th International Conference on Software Engineering
(ICSE ’12), Zurich, Switzerland, Jun 2012, pp. 1353–1356.

[32] M. Hussein, J. Han, J. Yu, and A. Colman, “Enabling runtime
evolution of context-aware adaptive services,” in Proceedings
of the IEEE 10th International Conference on Services Com-
puting (SCC ’13), Santa Clara, CA, Jun - Jul 2013, pp. 248–
255.

[33] O. Ortiz, A. B. Garcı́a, R. Capilla, J. Bosch, and M. Hinchey,
“Runtime variability for dynamic reconfiguration in wireless
sensor network product lines,” in Proceedings of the 6th
International Workshop on Dynamic Software Product Lines
(DSPL ’12), Salvador, Brazil, Sep 2012, pp. 143–150.

[34] J. Bosch and R. Capilla, “Dynamic variability in software-
intensive embedded system families,” IEE Computer, vol. 45,
no. 10, pp. 28–35, Oct 2012.

[35] J. White, D. Benavides, D. C. Schmidt, P. Trinidad,
B. Dougherty, and A. Ruiz-Cortes, “Automated diagnosis
of feature model configurations,” Journal of Systems and
Software, vol. 83, no. 7, pp. 1094–1107, Jul 2010, {SPLC}
2008.

[36] P. Trinidad, “Automating the analysis of stateful feature
models,” Ph.D. dissertation, Universidad de Sevilla, 2012.

