
Feature Location through the Combination of
Run-time Architecture Models and Information

Retrieval

Lorena Arcega1,2, Jaime Font1,2 Øystein Haugen3, and Carlos Cetina1

1 Universidad San Jorge, SVIT Research Group, Zaragoza, Spain
{larcega,jfont,ccetina}@usj.es

2 University of Oslo, Department of Informatics, Oslo, Norway
3 Østfold University College, Department of Information Technology, Halden, Norway

oystein.haugen@hiof.no

Abstract. Eighty percent of the lifetime of a system is spent on main-
tenance activities. Feature location is one of the most important and
common activities performed by developers during software maintenance.
This work presents our approach for performing feature location by lever-
aging the use of architecture models at run-time. Specifically, the execu-
tion information is collected in the architecture model at run-time. Then,
our approach performs an Information Retrieval technique at the model
level. We have evaluated our approach in a Smart Hotel with its archi-
tecture model at run-time. We compared our architecture-model-based
approach with a source-code-based approach. The rankings produced
by the approaches indicate that since models are on a higher abstrac-
tion level than source code, they provide more accurate results. Our
architecture-model-based approach ranks the relevant elements in the
top ten positions of the ranking in 84% of the cases; in the top positions
in the ranking of the source-code-based approach, there are false posi-
tives associated with some programming patterns and true positives are
spread between positions 12 and 100.

Keywords: Arquitecture Model, Models@Run-time, Feature Location,
Information Retrieval, Reverse engineering

1 Introduction

In software development, all systems evolve over time as new requirements
emerge or when bug-fixing becomes necessary. Lehman et al. [13] pointed out
that up to 80% of the lifetime of a system is spent on maintenance and evo-
lution activities. Feature location is one of the most important and common
activities performed by developers during software maintenance and evolution
[8]. Currently, research efforts in feature location are concerned with identifying
software artifacts that are associated with a program functionality (a feature).

Models at run-time provide a kind of formal basis for reasoning about the
current system state, for reasoning about necessary adaptations, and for analyz-



2

ing the consequences of possible system adaptations. Models at run-time devel-
opment approaches have the proven capability to deliver complex, dependable
software effectively and efficiently.In this paper, we show that the information
extracted from architecture models at run-time can be useful in the field of fea-
ture location. In models at run-time [5], there is a causal connection between
the system and the run-time model (i.e., there is a bidirectional relation between
the source code and the run-time model).

This work proposes an approach that combines architecture models at run-
time and Information Retrieval (IR) for feature location. In the first step of
our approach, the software engineer executes a scenario, which uses the desired
feature to be located. The execution information is collected in the architecture
model at run-time. Then, our approach filters the trace in order to extract the
relevant elements of the models. We adapt an information retrieval technique,
Latent Semantic Indexing (LSI). This technique allows the software engineers to
write queries that are relevant to the feature to be located. Finally, the software
engineers obtain a ranked list of model elements that are related to the feature
based on the similarity to the query.

We have evaluated our approach in a Smart Hotel that is defined with an
architecture model at run-time. The Smart Hotel presents sixty-eight model
elements in the architecture model that are implemented in 268 Java classes
(about 67,207 methods of source code). We have compared our approach based
on models with a feature location approach that is based on source code, which is
presented in [14]. We chose this approach because it outperforms all other source-
code-based approaches that use a single scenario and information retrieval [8].

Fig. 1. Smart Hotel Architecture Model



3

The results indicate that the information gathered at a high level of ab-
straction of architecture models is closer to natural language queries of software
engineers; hence, the rankings are more accurate. Our architecture-model-based
approach ranks the relevant elements in the top ten positions of the ranking in
84% of the cases; in the top positions in the ranking of the source-code-based
approach, there are false positives associated with some programming patterns
and true positives are spread between positions 12 and 100.

The remainder of the paper is structured as follows. In Section 2, we present
the Smart Hotel. In Section 3, we introduce our approach for feature location
with architecture models at run-time. In Section 4, we evaluate our approach
with the Smart Hotel and we discuss the results. In Section 5, we examine the
related work of the area, and we present our conclusions in Section 6.

2 The Smart Hotel

The running example and the evaluation of this paper are performed through a
Smart Hotel [6]. The Smart Hotel is reconfigured in response to changes in the
context, for example if there is a client in the room or not, and what activities
they may be performing (sleeping, watching TV, ...). This section shows the
language used for specifying the architecture model of the Smart Hotel. This
section also shows how the architecture model is reconfigured at run-time in
response to context changes.

2.1 The Architecture Model

We use Pervasive Modeling Language (PervML) [16] to describe the Smart Hotel
architecture. PervML4 is a DSL that describes pervasive systems using high-level
abstraction concepts based on Meta-Object Facility (MOF) 1. This language is

4 https://tatami.dsic.upv.es/pervml/index.php
1 Meta object facility (MOF) 2.0 core specification, 2003

Lighting By Presence 
(The user is in the room)

Presence Simulation
(Nobody is in the room)

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g
Presence Sensors

1

Security
Service

Presence
Simulator

Alarm

b c

e

f

TV Lights

context
change

Fig. 2. Smart Hotel Architecture Model Reconfigurations



4

focused on specifying heterogeneous services in specific physical environments
such as the services of a Smart Hotel. This DSL has been applied to develop
solutions in the Smart Hotel domain. The PervML language provides different
models to specify the services and devices of a pervasive system.

Due to space constraints, in this paper, we only focus on the subset of Per-
vML that specifies the relationships among devices and services. This subset
specifies the components that define a particular configuration system (services
and devices) and how these components are connected with each other (chan-
nels). Services are depicted by circles, devices are depicted by squares, and the
channels connecting services and devices are depicted by lines (see Fig. 1).

2.2 The Architecture Model Reconfiguration

The Smart Hotel reconfiguration engine determines how the system should be
reconfigured in response to a context change, and then it modifies the PervML
architecture model accordingly. The Monitor uses the run-time state as input
to check context conditions. If any of these conditions are fulfilled, the Analyzer
queries the run-time models about the necessary modifications. The response of
the models is used by the Planner to elaborate a reconfiguration plan. This plan
also contains reconfiguration actions, which modify the architecture model and
maintain the consistency between the PervML architecture model and the sys-
tem. The Execution of this plan modifies the system by executing reconfiguration
actions that deal with the activation and deactivation of software components
and the creation and destruction of channels among components. For more de-
tails about the reconfiguration engine see [6].

Figure 2 shows two Smart Home configurations according to the concrete
syntax of the PervML. Figure 2 (left) shows a User in the room configuration,
while Figure 2 (right) shows a Nobody in the room configuration. As it can be

Execute
scenario

scenario Executed
model elements

Creating a 
Corpus

query

List of model 
elements

Normalized attributes
and method names

Ranked executed
model elements

Preprocessing 
the Corpus

IndexingTerm-by-model
element Matrix

Querying

Information Retrieval
Phase

Dynamic Analysis Phase

Fig. 3. Feature Location Approach based on Architecture Models at Run-Time



5

observed, movement sensors are not used for lighting (left); instead, they are used
to provide information to the security service (right). In addition, the Occupancy
simulation service is activated in the Nobody in the room configuration, and the
connections that are required for this service to communicate with multimedia,
lighting, and security services are established.

3 Feature Location with Architecture Models at
Run-time

Fig. 3 shows an overview of our feature location approach. In the Dynamic
Analysis phase, the software engineer executes a scenario, which uses the target
feature to be located. The run-time architecture model obtained from the run-
ning scenario contains the elements of the model that are related to the target
feature.

In the Information Retrieval phase, the approach filters the run-time archi-
tecture model to extract the relevant elements of the target feature to be lo-
cated. To achieve the filtering, we adapt an Information retrieval (IR) technique
named Latent Semantic Indexing (LSI) [12], which allows the software engineers
to write queries that describe the feature to be located. The result is a ranked
list of model elements that are related to the feature based on the similarity to
the provided query.

The following subsections present the details of each one of the steps of our
approach that must be carried out in order to perform the feature location at
the model level. We use the Smart Hotel presented in Section 2 throughout the
different subsections to illustrate the details with a running example.

3.1 The Dynamic Analysis Phase

Execution information is gathered via dynamic analysis (see Fig. 3), which is
commonly used in program comprehension and involves executing a software
system under specific conditions. Invoking the desired feature during run-time
generates a feature-specific execution trace. In other words, the input for the
execution is a scenario that runs the specific feature.

For example, we depict a scenario where we want to fix a bug in the gradual
lights in the Smart Hotel. Therefore, the feature that we must locate is the
Gradual Lighting service. We follow the information from the bug report to
define the scenario that executes the targeted feature. In this case, the scenario
is as follows:

’The software engineer simulates an empty Smart Hotel room. The lights are
off. The software engineer simulates that a client enters the room. The lights
gradually turn on. The software engineer simulates that the client leaves the
room, and then the lights gradually turn off.’



6

Presence
Service

Illumination
Service

Light
Energy
Service

…
Outside
Detector

room 1 2 0 1 … 2

automated 2 1 0 0 … 4

light 6 5 7 0 … 0

presence 4 2 0 0 … 1

intensity 0 2 1 1 … 0

door 6 0 0 0 … 1

detector 1 1 0 2 … 2

infrared 1 1 0 2 … 1

energy 2 1 0 6 … 0

... ... ... ... … … ...

security 1 0 0 1 … 4

Te
rm

s

Model Elements

Query

1

0

2

6

1

0

0

0

0

...

0

LSI Results

Q: Query
P: Presence Service
I : Illumination Service
L: Light 
E : Energy Service
O: Outside Detector

Q

P

L

E

O

I

Model
Elements

P I L ... E O

Positions 1 2 3 ... n-1 n

Ranking

Fig. 4. Information Retrieval via Latent Semantic Indexing (LSI)

3.2 The Information Retrieval Phase

Textual information in source code (represented by identifier names and internal
comments) embeds domain knowledge about a software system. In our case,
textual information corresponds to the names, attributes and methods of the
model elements. This information can be leveraged to locate the implementation
of a feature through the use of IR. IR works by comparing a set of artifacts to
a query and ranking these artifacts by their relevance to the query.

There are many IR techniques that have been applied for feature location
tasks. However most feature location research efforts have shown better results
when LSI is applied [18, 14, 17]. To perform LSI, our approach follows five main
steps: creating a corpus, preprocessing, indexing, querying, and generating re-
sults (see Fig. 3 Information Retrieval phase).

We adapted each step of the LSI technique to work with architecture models.
Instead of using the source code files, we used the architecture model that con-
tains the executed model elements from the dynamic analysis. The adaptation
is performed as follows:

Creating a corpus. In the first step of LSI, a document granularity needs to
be chosen to form a corpus. A document lists all the text found in a contiguous
section of source code (methods, classes, or packages). A corpus consists of a set
of documents. In this work, each document corresponds to a model element of
the architecture model. Each document (model element) includes text from the
names of the attributes and methods.

Preprocessing. Once the corpus is created, it is preprocessed. Preprocess-
ing involves normalizing the text of the documents. For source code, operators



7

and programming language keywords are removed. In addition, identifiers and
compound words are split. In this work, the type of the attributes and the type
of the parameters in the methods are removed. Then, all the identifiers are split;
for example “IlluminationService” becomes “illumination” and “service”.

Indexing. The corpus is used to create a term-by-document matrix. Each
row of the matrix corresponds to each term in the corpus, and each column
represents each document. Each cell of the matrix holds a measure of the weight
or relevance of the term in the document. The weight is expressed as a simple
count of the number of times that the term appears in the document. In other
words, each term-document pair has a number that indicates the number of times
this term appears as part of the names of attributes or methods of this model
element. In this work, in the term-by-document co-occurrence matrix, the terms
(rows) correspond to the names of the attributes or methods (i.e., intensity)
of the run-time architecture model and the documents (columns) correspond to
the model elements (i.e., IlluminationService) that have appeared in the run-time
architecture model.

Fig. 4 shows this term-by-document co-occurrence matrix with the values as-
sociated to our running example. Each row in the matrix stands for each one of
the unique words (terms) extracted from our run-time architecture model. Fig.
4 shows a set of representative keywords in the domain such as ’room’, ’light’,
or ’presence’ as the terms of each row. Each column in the matrix stands for the
model elements of the run-time architecture model. Fig. 4 also shows the names
of the model elements in the columns such as ’PresenceService’ or ’Illumination-
Service’, which represent the model elements of the run-time architecture model.
Each cell in the matrix contains the frequency with which the keyword of its row
appears in the document denoted by its column. For instance, in Fig. 4, the term
’light’ appears 6 times in the ’PresenceService’ model element.

Querying. A user formulates a query in natural language consisting of words
or phrases that describe the feature to be located. Since LSI does not use a pre-
defined grammar or vocabulary, users can originate queries in natural language.
In this work, we use the bug reports to formulate the queries. Only the relevant
terms are taken into account, and words such as determinants and connectors
from the language are avoided.

In Fig. 4, the query column represents the words that appear in the bug re-
port. Each cell contains the frequency with which the keyword of its row appears
in the query. For instance, the term ’light’ appears 2 times in the query.

Generating results. In LSI, the query and each document correspond to
a vector. The cosine of the angle between the query vector and a document
vector is used as the measure of the similarity of the document to the query.
The closer the cosine is to 1, the more similar the document is to the query. A
cosine similarity value is calculated between the query and each document, and
then the documents are sorted by their similarity values. The user inspects the
ranked list to determine which of the documents are relevant to the feature.

We obtain vector representations of the documents and the query by nor-
malizing and decomposing the term-by-document co-occurrence matrix using a



8

matrix factorization technique called singular value decomposition (SVD) [14].
SVD is a form of factor analysis, or more precisely, the mathematical general-
ization of which factor analysis is a special case. In SVD, a rectangular matrix
is decomposed into the product of three other matrices. One component ma-
trix describes the original row entities as vectors of derived orthogonal factor
values, another describes the original column entities in the same way, and the
third is a diagonal matrix that contains scaling values such that when the three
components are matrix-multiplied, the original matrix is reconstructed.

A three-dimensional graph of the LSI results is provided in Fig. 4. The graph
shows the representation of each one of the vectors, labeled with letters that
represent the names of the model elements, which are referenced in the box
below the graph. The graph reflects the ’PresenceService’ model element vector
as being the closest to the query vector, followed by the ’IlluminationService’
model element vector.

The goal of our approach is to rank model elements relevant to the feature
to locate within the top positions. The ranking of model elements is ordered
by the values of the cosines. In the running example (see Fig. 4, Ranking),
the ’PresenceService’ element is in the first position and therefore is the most
relevant, while the ’OutsideDetector’ element is in the last position and is the
less relevant.

4 Evaluation: Feature Location in the Smart Hotel

We evaluated whether our feature location approach with architecture models at
run-time achieves better results than current approaches [14] that use source code
to perform feature location. We choose the approach presented in [14] because
is the one that shows the best results for feature location in source code [8, 20].

We defined the experimental design of our study using the Goal-Question-
Metric method (GQM) [2]. We used the template presented in [3]. The GQM
method was defined as a mechanism for defining and interpreting a set of opera-
tion goals using measurements. In this evaluation, according to GQM template
our goal was the following:

(A)
Smart Hotel
Design-time

Architecture
model

Software
components

(B)
Smart Hotel

Run-time

Running
code

Architecture
model

at
Run-time

deployment
scenario
execution

Model-
based
Traces

Source-
code-
based
Traces

Model-based
Feature location

Source-code-based
Feature location

input

input

output

output

M-b
Ranking

S-c-b
Ranking

Oracle

Tagged
M-b

Ranking

Tagged
S-c-b

Ranking

input output

input output

input

(C)
Dynamic
Analysis

(D)
Information Retrieval

(E)
Checking Results

Feature
model

as Oracle

SPL

Fig. 5. The evaluation process followed in the Smart Hotel



9

– Object: Our Smart Hotel
– Purpose: Evaluation
– Issue: The accuracy of the results in our architecture-model-based feature

location approach
– Context: Feature location in the run-time architecture model

To fulfill this goal, we focused on answering the following research question:
Does our architecture-model-based approach for feature location provide better
results than a source-code-based approach?

Fig. 5 shows the entire process that we followed for this evaluation.
(A) Smart Hotel Design-time. The Smart Hotel was developed using a

Dynamic Software Product Line (DSPL) [4]. The architecture model and the
source code of the Smart Hotel were configured with a feature model [7]. The
feature model specifies the 39 different features that the Smart Hotel has imple-
mented. We used the feature model of the software product line as an oracle to
evaluate our approach. In other words, we made use of a set of PervML models
and implementation codes whose feature realizations are known beforehand and
will be considered as the ground truth. This enables us to compare the oracle
with the results provided by our approach and the source-code approach.

The Smart Hotel presents sixty-eight model elements (thirteen services, twenty
devices, and thirty-five channels) in the architecture model. The software com-
ponents of the Smart Hotel consist of 268 classes that are implemented in about
67,207 methods of Java source code.

(B) Smart Hotel Run-time. In the evaluation set-up, a scale environ-
ment with real KNX5 devices was used to represent the Smart Hotel. In our
case, we chose to carry out in-virtuo experiments [2, 21], where the real world is
described as computer models. This experiment involves the interaction among
participants and a computerized model of reality. The simulated environment
offers major advantages regarding the cost and the feasibility of replicating a
real-world configuration. In addition, some scenarios, such as fires or floods,
cannot be replicated in the real world.

(C) Dynamic Analysis. We then ran the scenario that executes the feature
to be located. For this case study, we executed 30 independent runs (as suggested
by [1]) for each of the 39 features. The execution of the scenario generated the
Smart Hotel run-time architecture model and source code traces.

(D) Information Retrieval. Our architecture-model-based feature loca-
tion approach and the source-code-based feature location approach used the
Smart Hotel run-time architecture model and source code traces, respectively.
Our architecture-model-based feature location approach produced a ranking of
model elements (see Fig. 5, M-b Ranking) and the source-code-based feature
location approach produced a ranking of methods (see Fig. 5, S-C-b Ranking)
for the targeted feature.

(E) Checking Results. The feature model oracle enabled us to know how
many of the model elements or methods in the rankings were the ones that

5 KNX technology is a standard for applications in home and building control
(http://www.knx.org/)



10

realized the target feature. We tagged the model elements (see Fig. 5, Tagged
M-b Ranking) and methods (see Fig. 5, Tagged S-C-b Ranking) that belonged
to the targeted feature. This allowed us to know their positions in the rankings.

4.1 Results

We performed this evaluation with the thirty-nine features that compose the
Smart Hotel. We defined the scenarios based on bug reports of each one of the
features. On average, the traces generated were the following: 46 model elements
in the architecture-model-based feature location approach and 3,817 methods in
the source-code-based feature location approach.

Fig. 6 shows the position of the first model element and the first method that
belong to the target feature in the ranking for each one of the thirty-nine features.
The x-axis represents the features, and the y-axis represents the position in the
ranking. The blue dots represent the first model element for each feature and
the red Xs represent the first source code method for each feature. The position
of the first model element that belongs to each one of the features has values
between 1 and 28, where the 84% of the results are in the top ten positions.
However, the position of the first source code method that belongs to each one
of the features has values between 12 and 100.

Does our architecture-model-based approach for feature location pro-
vide better results than the source-code-based approach? Our architecture-
model-based approach ranks the relevant elements in the top ten positions of the
ranking in 84% of the cases; in the top positions in the ranking of the source-
code-based approach, there are false positives associated with some programming
patterns and true positives are spread between positions 15 and 100 (see Fig. 6).

Features

P
o

si
ti

o
n

 i
n

 t
h

e
 r

a
n

k
in

g
 

Fig. 6. Position of the first model element and the first method that belong to the
target feature in the ranking for each one of the features



11

It is accepted by the feature location community [14, 18] that, a feature loca-
tion approach is considered better than another feature location when it produces
a ranking where the elements that belong to the feature are in higher positions
than in the ranking of the other approach. In our evaluation with the Smart
Hotel, our architecture-model-based feature location approach obtained better
positions in the rankings than the source-code-based approach.

4.2 Analysis of the Results

The results of our evaluation confirms that introducing architecture models at
run-time outperforms the equivalent technique at source code level.

Fig. 7 shows the graphical representation of the ranking for the ’Gradual
Lighting’ feature (feature number five in Fig. 6). Due to space constraints, we
only show the graphical representation for one feature, however, all the rankings
follow a similar distribution in the results.

The query is the vector that is on the x-axis. The remainder of the vectors
are model elements in the architecture-model-based feature location approach
or methods in the source-code-based feature location approach. Those that have
been tagged by the oracle have a ri label at the end of the arrow, while those
that have not been tagged have nothing at the end of the arrow. The angle
corresponds to the cosine with which we calculated the position in the ranking
(see Section 3.2); the closer the model element or method is to the query, the
higher the position in the ranking. The length of each vector indicates the number
of times that the terms appear in each model element or method. The longer
the vector is, the more terms appear in the model element or method.

(a) Model elements

q

r1ME

r2ME
r3MEr4ME

(b) Source code methods

q

r1M

r2M
r3M

r4M
r5M

q Query

Non-relevant Model Elements or Methods

rnME Relevant Model Elements

rnM Relevant Source Code Methods

Fig. 7. Vectorial representation of the model elements and source code methods in the
Ranking of the ’Gradual Lighting’ feature



12

The graph of the left corresponds to the architecture-model-based feature
location approach, of the total of vectors (model elements), forty-six, the graph
only shows the thirty-three which have positive cosines, the rest, thirteen, are in
the left of the y-axis and have few relevance for the query. The graph on the right
corresponds to the source-code-based feature location approach, of the total of
vectors (methods), 3,817, the graph only shows the 1,302, which have positive
cosines, the rest, 2,515, are in the left of the y-axis.

The first difference between the architecture-model-based approach and the
source-code-based approach lies in the size of the search space in which the
feature must be located. The goal of a feature location technique is to reduce the
effort required by software engineers to find the desired feature. Our architecture-
model-based approach on average requires searching in less than fifty model
elements while a source-code-based approach on average requires searching in
more than three thousand eight hundred methods.

The graphical representation of Fig. 7 allows us to see that the architecture-
model-based approach discriminates better than the source-code-based approach.
The majority of the model elements that belong to the feature achieve better
results than the ones that do not belong. However, in the source-code-based ap-
proach, the source code methods that belong to the feature and the source code
methods that do not belong to the feature are not differentiated.

In addition, the vectors of the model elements that belong to the feature
are closer to the query vector than the vectors of the source code methods that
belong to the feature (see Fig. 7). Therefore, the model-based approach provides
searches that are more accurate.

Since architecture models at run-time allow working on a high level of ab-
straction, the words used at the model level (i.e., room, presence) are closer to
the query than the ones used at source code level (i.e., save or run). The result is
that queries using a natural language show better results with the architecture-
model-based approach. In the source-code-based approach some auxiliary terms
are taken into account. Some terms, like controller or run, can proceed from
some programming patterns. By raising the level of abstraction with the archi-
tecture model, we can prevent auxiliary methods and variables from interfering
with the feature location.

Finally, in our Smart Hotel, we realized that the model elements that con-
tained few attributes and methods got worse positions in the ranking than the
ones that contained more attributes and methods. For example, one of the ele-
ments related to the feature ’Gradual Lighting’ in Fig. 7 obtained position 27 in
the ranking. This is because this element corresponds to a channel element that
connects two services. This particular channel only has three attributes that de-
scribe the information that goes through the channel. The information required
by this element was not as detailed as the other model elements when specifying
the model. For this reason, the model element corresponding to this channel got
a lower position in the ranking. In contrast, other kinds of channels got better
positions since, on average, they have about twenty attributes and methods.



13

4.3 Threats to validity

In this section, we discuss some of the issues that might have affected the results
of the evaluation and may limit the generalizations of the results.

One issue is whether or not the software system used in the evaluation is
representative of those used in practice. Given the scale and complexity of our
Smart Hotel (sixty-eight model elements and 67.207 methods), we consider our
evaluation to be a good starting point for representing a realistic case. However,
this threat can be reduced if we experiment with other software systems of
different sizes and domains.

Furthermore, the DSL model used in this study is a language in a specific
domain. PervML is a DSL that describes pervasive systems using high-level
abstraction concepts. However, other experiments with other DSLs should be
performed to validate our findings.

Another issue is the selection of the scenarios based on the bug reports to
obtain the execution trace. Since we are experts in the Smart Hotel system,
we can claim that our scenarios are good representatives of features that have
been necessary to locate in order to solve the most common bugs of the Smart
Hotel. Thus, depending on the chosen scenarios, the results may differ. The more
knowledge the software engineer has about the system, the better the scenarios
and the queries will be, leading to better results.

5 Related work

Some approaches that are related to feature location use design-time models to
extract variability. Although they do not use architecture models at run-time,
their works are based on extracting features using models.

Font et al. [9] suggest that model fragments that are extracted mechani-
cally may not be recognizable units by the application engineers. They propose
identifying model patterns by human-in-the-loop and conceptualizing them as
reusable model fragments. Their approach provides the means to identify and
extract those model patterns and further apply them to existing product mod-
els. In [10], the work from [9] is extended to handle situations where the domain
expert fails to provide accurate information. The authors propose a genetic al-
gorithm for feature location in model-based software product lines. When this
method was compared with another approach that did not use a genetic algo-
rithm, the results showed that their approach was able to provide solutions for
situations where the information of the domain expert was inaccurate, while the
other approach failed.

Martinez et al. [15] propose an extensible framework that allows features to
be identified, located, and extracted from a family of models. They introduce
the principles of this framework and provide insights on how it can be extended
for use it in different scenarios. As a result, the initial investment required by
the task of adopting a software product line from a family of models is reduced.



14

Xue et al. [22] present an approach to support effective feature location in
products variants. They exploit commonalities and differences of product vari-
ants by software differencing and formal concept analysis (FCA) techniques so
that IR techniques can achieve satisfactory results.

All of these works are based on extracting model fragments from a given set of
models taking into account their commonalities and variabilities. However, these
approaches do not take into account the run-time behaviour of the systems and
are not focused on feature location. Nevertheless, all of them can be used as a
basis for the extraction of the model fragments that correspond to the feature
to be located.

There are many more research efforts in dynamic feature location techniques
that are based on source code analysis. Some of these works combine other kinds
of analysis (i.e., information retrieval) to obtain more accurate results.

Liu et al. [14] combine information from an execution trace and from the
comments and identifiers from the source code. They executed a single scenario
(which runs the desired feature), and all executed methods are identified based
on the collected trace using LSI. The result is a ranked list of executed methods
based on their textual similarity to a query. Similarly, Koschke et al. [11] develop
a semi-automated technique using a combination of static and dynamic program
analysis. However, they use FCA to explore the results of the dynamic analysis.

Revelle et al. [18] apply data fusion for feature location. Their technique
combines information from textual, dynamic, and web mining analysis applied
to a software system. Their input is a single scenario that executes the feature;
after running the scenario, they construct a call graph that contains only the
methods that were executed. Then, they apply a web-mining algorithm, and the
system filters out low-ranked methods. The remaining set of methods is scored
using LSI based on their relevance to the input query that describes the feature.

Similarly to our approach, all these feature location techniques use informa-
tion from different sources. Additionally, Revelle and Poshyvanyk [19] present
an exploratory study of feature location techniques that use various combina-
tions of textual, dynamic, and static analysis. Also, they introduces a new way
of applying textual analysis by which queries are automatically composed by
identifiers of a method known to be relevant to a feature. Although they are
based on locating feature in source code, some of the ideas could be applied to
our architecture-model-based feature location approach to obtain more accurate
results.

6 Conclusions

This work proposes an approach that combines architecture models at run-time
and information retrieval for feature location. Specifically, our approach uses a
scenario that executes the desired feature to be located. In addition, our approach
ranks all of the model elements that are executed to extract the model elements
that are related to the feature. We adapt an information retrieval technique
called LSI to work with architecture models at run-time. The ranked list of



15

model elements is obtained based on the similarity of these model elements to a
query in a natural language.

Both models and feature descriptions are on a higher abstraction level than
source code. This means that models are closer to natural language queries, and
the results are more accurate. The comparison of our architecture-model-based
feature location approach with a source-code-based feature location approach
for the Smart Hotel case study demonstrate this outcome.

Our architecture-model-based approach ranks the relevant elements in the
top ten positions of the ranking in 84% of the cases. In the top positions of the
source-code-based approach ranking, there are false positives associated with
some programming patterns and true positives are spread between positions 12
and 100.

Acknowledgments

This work has been partially supported by the Ministry of Economy and Com-
petitiveness (MINECO) through the Spanish National R+D+i Plan and ERDF
funds under the project Model-Driven Variability Extraction for Software Prod-
uct Line Adoption (TIN2015-64397-R).

References

1. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(May 2014), http://dx.doi.org/10.1002/stvr.1486

2. Basili, V.R.: The role of experimentation in software engineering: Past, current,
and future. In: Proceedings of the 18th International Conference on Software En-
gineering. pp. 442–449. ICSE ’96, IEEE Computer Society, Washington, DC, USA
(1996), http://dl.acm.org/citation.cfm?id=227726.227818

3. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering. Wiley (1994)

4. Bencomo, N., Hallsteinsen, S., Santana de Almeida, E.: A view of the dynamic
software product line landscape. Computer 45(10), 36–41 (Oct 2012)

5. Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.): Models@run.time.
Foundations, Applications, and Roadmaps. Springer International Publishing
(2014)

6. Cetina, C.: Achieving Autonomic Computing through the Use of Variability Models
at Run-time. Ph.D. thesis, Universidad Politécnica de Valencia (2010)

7. Czarnecki, K., Helsen, S., Eisenecker, U.: Software Product Lines: Third Inter-
national Conference, SPLC 2004, Boston, MA, USA, August 30-September 2,
2004. Proceedings, chap. Staged Configuration Using Feature Models, pp. 266–
283. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

8. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
A taxonomy and survey. In: Journal of Software Maintenance and Evolution: Re-
search and Practice (2011)

9. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Building software product lines from
conceptualized model patterns. In: Proceedings of the 2015 19th International Soft-
ware Product Line Conference. SPLC ’15, Nashville, TN, USA. (2015)



16

10. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature location in model-based soft-
ware product lines through a genetic algorithm. In: 15th International Conference
on Software Reuse. ICSR 2016, Limassol, Cyprus (Jun 2016)

11. Koschke, R., Quante, J.: On dynamic feature location. In: Proceedings
of the 20th IEEE/ACM International Conference on Automated Software
Engineering. pp. 86–95. ASE ’05, ACM, New York, NY, USA (2005),
http://doi.acm.org/10.1145/1101908.1101923

12. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic anal-
ysis. Discourse processes 25(2-3), 259–284 (1998)

13. Lehman, M.M., Ramil, J., Kahen, G.: A paradigm for the behavioural modelling of
software processes using system dynamics. Tech. rep., Imperial College of Science,
Technology and Medicine, Department of Computing (Sep 2001)

14. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature location via informa-
tion retrieval based filtering of a single scenario execution trace. In: Proceed-
ings of the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering. pp. 234–243. ASE ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1321631.1321667

15. Martinez, J., Ziadi, T., Bissyandé, T.F., Le Traon, Y.: Bottom-up adoption of
software product lines: A generic and extensible approach. In: Proceedings of the
2015 19th International Software Product Line Conference. SPLC ’15, Nashville,
TN, USA. (2015)

16. Muñoz, J.: Model Driven Development of Pervasive Systems. Building a Software
Factory. Ph.D. thesis, Universidad Politécnica de Valencia (2008)

17. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.: Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Transactions on Software Engineering 33(6), 420–432
(Jun 2007), http://dx.doi.org/10.1109/TSE.2007.1016

18. Revelle, M., Dit, B., Poshyvanyk, D.: Using data fusion and web mining to support
feature location in software. In: Program Comprehension (ICPC), 2010 IEEE 18th
International Conference on. pp. 14–23 (June 2010)

19. Revelle, M., Poshyvanyk, D.: An exploratory study on assessing feature location
techniques. In: Program Comprehension, 2009. ICPC ’09. IEEE 17th International
Conference on. pp. 218–222 (May 2009)

20. Rubin, J., Chechik, M.: A survey of feature location techniques. In: Reinhartz-
Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering,
pp. 29–58. Springer Berlin Heidelberg (2013)

21. Travassos, M.O.B.G.H.: Contributions of in virtuo and in silico experiments for the
future of empirical studies in software engineering. In: In Proceedings of the ESEIW
2003 Workshop on Empirical Studies in Software Engineering. IEEE Computer
Society (2003)

22. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: 2012 19th Working Conference on Reverse Engineering. pp. 145–154 (Oct 2012)


