Evolutionary Algorithm for Bug Localization in the
Reconfigurations of Models at Runtime

Lorena Arcega
SVIT Research Group
Universidad San Jorge

Zaragoza, Spain
Department of Informatics
University of Oslo
Oslo, Norway
larcega@us;j.es

ABSTRACT

Systems with models at runtime are becoming increasingly com-
plex, and this is also accompanied by more software bugs. In this
paper, we focus on bugs appearing as the result of dynamic recon-
figurations of the system due to context changes. We materialize
our approach for bug localization in reconfigurations as an evo-
lutionary algorithm. We guide the evolutionary algorithm with
a fitness function that measures the similarity to the description
of the bug report. The result is a ranked list of reconfiguration
sequences, which is intended to identify the reconfiguration rules
that are relevant to the bug. We evaluated our approach in BSH and
CAF, two real-world industrial case studies, measuring the results
in terms of recall, precision, F-measure and Matthews Correlation
Coefficient (MCC). In our evaluation, we compare our approach
with two other approaches: a baseline that is the one used by our in-
dustrial partners for bug localization and a random search as sanity
check. Our study shows that our approach, which takes advantage
of the reconfigurations of models at runtime, outperforms the other
two approaches. We also performed a statistical analysis to provide
evidence of the significance of the results.

CCS CONCEPTS

« Software and its engineering — Model-driven software en-
gineering; Search-based software engineering;

KEYWORDS

Bug Localization, Models at Runtime

ACM Reference Format:

Lorena Arcega, Jaime Font, and Carlos Cetina. 2018. Evolutionary Algo-
rithm for Bug Localization in the Reconfigurations of Models at Runtime.
In ACM/IEEE 21th International Conference on Model Driven Engineering
Languages and Systems (MODELS ’18), October 14-19, 2018, Copenhagen,
Denmark. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3239372.3239392

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4949-9/18/10...$15.00
https://doi.org/10.1145/3239372.3239392

Jaime Font
SVIT Research Group
Universidad San Jorge
Zaragoza, Spain
Department of Informatics
University of Oslo
Oslo, Norway
jfont@usj.es

Carlos Cetina
SVIT Research Group
Universidad San Jorge

Zaragoza, Spain

ccetina@usj.es

1 INTRODUCTION

Model-Driven Engineering (MDE) is being applied in an ever in-
creasing manner to cope with the complexity of software systems
by raising the level of abstraction [23]. Models at runtime [6] is
defined as a causally connected self-representation of the associated
system that emphasizes the structure, behavior, or goals of the sys-
tem from a problem space perspective [7]. A recent survey [36] has
classified the objective of the use of models at runtime in the fol-
lowing categories: adaptation [27, 35], monitoring, simulation and
prediction [12, 16, 24], abstraction and platform independence [38],
consistency and conformance [2], policy checking and enforcement
[34], and error handling [10].

Software is becoming increasingly complex, and systems with
models at runtime are not an exception. Unfortunately, an increase
in complexity is accompanied by an increase in the appearance
of software bugs. Hence, software maintenance is becoming more
and more important. Lehman et al. [19] pointed out that up to 80%
of the lifetime of a system is spent on maintenance and evolution
activities. Software maintainers spend from 50% up to almost 90%
of their time trying to understand a program to make changes
correctly.

In a system with models at runtime, the models experience re-
configurations at runtime due to context changes, being these re-
configurations a source of bugs. A recent Search-Based Software
Engineering survey [40] reveals that none of the Bug Location ap-
proaches take in account the bugs caused by the reconfigurations
of a models at runtime system.

Our work is focused on locating bugs that appear as the result
of dynamic reconfigurations of the system due to context changes.
In this paper, we present an approach for bug localization in the
reconfigurations that occur in runtime models called EBRo. We
materialize our approach for bug localization in reconfigurations
through an evolutionary algorithm. The solutions provided by our
approach are sequences of reconfigurations that, when followed,
might lead to the model at runtime which contains the located bug.

The evolutionary algorithm is guided by a fitness function that
considers the similarity to the description of the bug report. To
measure the textual similarity, we start from an initial model at run-
time to which we apply a sequence of reconfigurations, obtaining
another model in which we evaluate whether the modified elements
are similar with the description of the bug. As a result, software
engineers obtain a ranked list of sequences of reconfigurations,

https://doi.org/10.1145/3239372.3239392
https://doi.org/10.1145/3239372.3239392
https://doi.org/10.1145/3239372.3239392

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

IHDSL Metamodel

Induction

Product Model

D—o—)

Provider Power Consumer
Channel Manager Channel
IHDSL syntax

NG N N

Power

Inverter Inductors Channels manager

Figure 1: IHDSL metamodel, syntax, and product model

intended to identify the reconfiguration rules that are relevant to
the bug.

We have applied our approach to the industrial domains of BSH
and CAF. BSH is one of the larges manufacturers of home appliances
in Europe. Its induction division has been producing induction
hobs under the brands of Bosch and Siemens for the last 15 years.
CAF produces a family of Programmable Logic Controller (PLC)
software to manage the trains they manufacture, which has been
under development for more than 25 years. The firmware from
both industries is specified by means of Domain Specific Languages.
The firmware of the products is generated from the DSL models
and uses models at runtime to change the configuration when their
products are in operation.

In our evaluation, we compare our approach with a baseline
approach. Since there are no specific baselines for bug localization
in reconfigurations of models at runtime, we use as a baseline the
approach used by BSH and CAF for bug localization. In addition,
we compare our approach with a random search approach (RS) as
sanity check. We apply our EBRo approach, the baseline approach
and the RS approach to the product families of BSH and CAF. They
provided us with documentation about bugs. For each bug, the
documentation provided a bug description, the reconfigurations
that trigger the bug and the localization of the bug. Taking the bug
descriptions, the set of reconfigurations, and an initial model of the
product family as input, and the reconfigurations that trigger the
bug and the location of the bugs as oracle (ground truth), we mea-
sure the results in terms of the standard measurements accepted by
the software engineering community: recall, precision, F-measure
(the combination of both recall and precision), and Matthews Cor-
relation Coefficient (MCC) [25, 33].

EBRo performed better than the other algorithms in terms of the
four measured performance indicators. On average, up to 78.72% of
the reconfigurations that were expected to trigger the bugs being
located (according to the oracle) were found when EBRo was used
(up to 66.84% for the baseline, and 38.42% for the random search
approach). It turns out that the genetic operations performed by
the EBRo approach with the fitness function are able to properly
traverse search spaces originated when locating bugs over runtime
reconfigurations of the system.

The remainder of the paper is structured as follows. In Section
2, we present the Domain Specific Language used by one of our
industrial partner. In Section 3, we explain the motivation for bug

Lorena Arcega, Jaime Font, and Carlos Cetina

turn on turn off

Model ccb Model CCc Model
Configuration Configuration Configuration
R1 1 R2 2 R3 3

Initial model | CCa
configuration

Legend

CC: Context Change R: Reconfiguration

Figure 2: Induction Hob at runtime

localization in reconfiguration rules. In Section 4, we describe our
bug localization approach. In Section 5, we evaluate the application
of our approach in BSH and CAF. In Section 6, we examine the
related work of the area. Finally, we present our conclusions in
Section 7.

2 BACKGROUND

In this section, we present the Domain Specific Language (DSL)
that is used by BSH to formalize their products and the models at
runtime of the induction hobs to which we apply our approach.

The newest Induction Hobs (IHs) ! feature full cooking surfaces,
where dynamic heating areas are automatically generated and acti-
vated or deactivated depending on the shape, size, and position of
the cookware placed on the top. These dynamic areas are managed
at runtime by calculating the resulting model after the changes in
the context of the IH.

The Domain Specific Language used by our industrial partner
to specify the Induction Hobs (IHDSL) is composed of 46 meta-
classes, 47 references among them, and more than 180 properties.
For legibility reasons and due to intellectual property right concerns,
in this section, we show a simplified subset of the IHDSL (see Fig. 1,
THDSL Metamodel and IHDSL Syntax). However, the evaluation was
performed using the full ITHDSL that is used in BSH. The Product
Model in Figure 1 depicts an example of a product model that is
specified with the IHDSL.

Inverters are in charge of transforming the electric supply to
match the specific requirements of the IH. Then, the energy is trans-
ferred to the inductors through the channels. There can be several
alternative channels, which enable different heating strategies de-
pending on the cookware placed on top of the IH at runtime. The
path followed by the energy through the channels is controlled by
the power manager. Inductors are the elements where the energy
is transformed into an electromagnetic field.

Figure 2 shows the behavior of an Induction Hob at runtime
2 The IH is turned on in an initial configuration with a known
model. In the face of changes in the context (CCs in Figure 2), re-
configurations (Rs in Figure 2) are triggered in order to change the
configuration of the IH. Then, the Induction Hob is in a different
configuration and therefore in a different model (Model Configu-
rations in Figure 2). Some examples of relevant context changes
include putting a pot on top, the pot reaches the set temperature,
the pot is moved to other place on the IH, or liquid spills from the
pot onto the surface. The reconfigurations activate or deactivate
inductors and inverters and connect them through channels.

Lhttps://www.youtube.com/watch?v=HjZ_nB-TY7w
Zhttps://www.youtube.com/watch?v=Gp6urUZZbek

E. Algorithm for Bug Localization in the Reconfigurations of MRT

Context of the induction hob

" Context change
2%

Expected final
I Legend ||configuration

Qk,jof 5—-O

Pot

Reconfigurations of the.induction hob

Legend
2

D_E‘Eg Inverter

R1 R2 O e)
Inductors

g N

Channels

Initial configuration

=45

R1 : newChannelForDoubleInductor(upperPowerGroup,secondaryInductor) o

" Final configuration

R2 : redirectPowerFromInverter(secondInverter, upperPowerGroup) Power
manager

Figure 3: Example of a context change, a bugged reconfigu-
ration and the reconfiguration rules performed

3 MOTIVATION

Figure 3 shows a reconfiguration that occurs in the Induction Hobs
of BSH. In the initial configuration, the Induction Hob has two
pots on top, heated through two inductors. The upper inductor is
powered with one inverter and the bottom inductor is powered
with three inverters. When a bigger pot is placed in the upper
inductor, the Induction Hob reconfigures itself. Another inductor
is activated ('R1’), and more energy is needed to heat the pot (R2’).
Therefore, the second inverter should give power to the upper
inductors. However, the second inverter is not disconnected from
the bottom power group (see the cross in Figure 3). This situation
causes a bug, because when the user changes the power level of
the upper inductors, the same power level will be applied to the
bottom inductors, and vice versa. This bug was solved by modifying
the reconfiguration rule 'R2’ so that in addition to redirecting the
power of the inverter, the inverter is also disconnected from the
previous power group (see expected final configuration in Figure
3).

While the system is in use, any reconfiguration can be activated
at any time. An Induction Hob can have a useful life of more than ten
years, so the number of different combinations of reconfigurations
that can be triggered is very high. In addition, some commercial
Induction Hobs can have up to 48 inductors that dynamically con-
nect and disconnect from the inverters. This Induction Hob has
2% possibilities for activating or deactivating the inductors, beside
differences in activation and deactivation orders. In addition, in-
ductors and inverters are not the only dynamic components of the
Induction Hob. Since the search space is too large, it is impossible
to explore the space of possibilities exhaustively. Therefore, we use
an evolutionary algorithm to locate bugs in the reconfiguration
rules.

4 BUG LOCALIZATION IN
RECONFIGURATION RULES
This section describes how the issue of bug localization in the

reconfigurations of runtime models can be addressed by using
our evolutionary algorithm, and the principles of our proposed

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

method. Therefore, we first present an overview of our approach
and, subsequently, provide the details of the approach and our
adaptation of the evolutionary algorithm.

4.1 Approach Overview

The general structure of our approach (EBRo) is introduced in
Figure 4. The goal of EBRo is to obtain a ranked list of sequences of
reconfigurations rules from a given list of reconfiguration rules that
may trigger the bug specified by the bug description. Our EBRo
approach takes the following inputs:

o A set of reconfiguration rules that describe the changes in
the model at runtime. The reconfiguration rules are triggered
by context changes.

e An initial model which is the model that specifies the ini-
tial configuration. In our case, the configuration when the
induction hob is turned on.

e A bug description of the target bug, using natural language.
Typically, the description comes from textual documenta-
tion of a bug report. Therefore, the query will include some
domain specific terms that are similar to those used when
specifying the reconfiguration rules and the models. The
knowledge of the engineers about the domain and the recon-
figuration rules and the models will be useful for selecting
the description from the bug report.

The output of EBRo (see Figure 4) is an ordered set of reconfigu-
ration sequences that might trigger the target bug. The ranking is
ordered following the similarity to the bug description. The search
space for our approach is determined not only by the number of
triggered reconfigurations, but also by the order in which they are
applied. To explore the search space, EBRo uses an evolutionary

Reconfiguration Initial Bug
Rules Model Description

—~.The induction hob

L crashes when the user
puts a pot that covers the

D T master and slave inductors

D, T (> and selects the highest
power level ...

Y

EBRo: Evolutionary algorithm
for Bug localization in Reconfigurations of
models at runtime

l

Ranked Reconfiguration Sequences

Reconfig. Chain | Similarity

R2-R15-R6 0.9
R2-R7-R5 0.8

Figure 4: Input and output of our bug localization in recon-
figurations of models at runtime

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

algorithm that enables the exploration of a large number of possible
reconfigurations. The evolutionary algorithm and its adaptation to
the bug localization problem are described in the following sections.

4.2 Adapting the Evolutionary Algorithm for
Bug Localization in Reconfigurations of
Models at Runtime

Evolutionary algorithms are inspired by Darwin’s evolutionary the-
ory, where a population of individuals is modified through crossover
and mutation operators [9]. Hence, to develop an evolutionary al-
gorithm, the following elements have to be defined:

e Representation of the individuals.

e Evaluation of the individuals using a fitness function for
each objective to determine a quantitative measure of their
ability to solve the problem under consideration.

e Selection of the individuals to transmit from one generation
to another.

o Creation of new individuals using genetic operators (crossover
and mutation) to explore the search space.

The following paragraphs describe the design of these elements
for our evolutionary algorithm for bug localization in reconfigura-
tions of models at runtime.

4.2.1 Individual representation. To represent a candidate solu-
tion (individual), we used a vector representation. Each vector’s
dimension represents a reconfiguration rule. Thus, a solution is de-
fined as a sequence of reconfigurations applied to a model. The size
of the solution represents the number of reconfigurations (dimen-
sions) in the vector. When created, the order of the reconfigurations
corresponds to their positions in the vector.

R1: newChannelForDoubleInductor(upperPowerGroup, secondaryInductor)

R21: redirectPowerFromInverter(secondInverter,upperPowerGroup)

R3: activatePowerFromInverter(secondInverter)

Figure 5: Representation of an individual

An example of an individual is given in Figure 5. This individual
contains three dimensions that correspond to three reconfigurations
applied to the initial model. For instance, the predicate newChan-
nelForDoubleInductor(upperPowerGroup, secondarylnductor) means
that a new channel is created in the upper power group, connecting
it with the secondary inductor.

4.2.2 Fitness function. After creating a solution, it should be
assessed using a fitness function. The fitness function quantifies
the quality of the proposed reconfiguration sequence. In our work,
we use an information retrieval technique called Latent Semantic
Indexing (LSI). Our algorithm assesses the relevance of each recon-
figuration sequence in relation to the bug description provided by
the user. The input of this step is a set of reconfiguration sequences,
and the output is the set of reconfiguration sequences, where each
reconfiguration sequence has been assigned with a fitness value
regarding its similarity to the bug description.

Lorena Arcega, Jaime Font, and Carlos Cetina

To assess the relevance of each reconfiguration sequence in rela-
tion to the bug description provided by the user, we apply methods
based on Information Retrieval (IR) techniques. Specifically, we
apply Latent Semantic Indexing (LSI) [20, 32] to analyze the re-
lationships between the description of the bug provided by the
user and the reconfiguration sequences. There are many IR tech-
niques, but most of the efforts show better results when applying
LSI [20, 30, 32], specially when working with source code. Models
are representations at a higher abstraction level than the source
code, and the language used to build them is closer to the bug
description language; therefore, we expect it to work better than
when applied to source code.

Initial model
configuration

D0 | |
O 1, »
N

\

Model after applying the

Reconfiguration 3 i
reconfiguration sequence

sequence

\Fitness
\
Bug description \ provider
channel

~.The induction hob limit
crashes when the user manager
puts a pot that covers the [;r;;gnsmy
master and slave inductors name
and selects the highest slave
power level ...

Figure 6: Terms extraction from a reconfiguration sequence

LSI constructs vector representations of a query and a corpus
of text documents by encoding them as a term by document co-
occurrence matrix, (i.e., a matrix where each row corresponds to
terms and each column corresponds to documents, with the last
column corresponding to the query). Each cell holds the number
of occurrences of a term (row) inside a document or the query
(column).

Figure 6 shows how we extract the texts needed to use LSL
First, we apply the reconfiguration sequence to the initial model
configuration. After applying it, we obtain a new model from which
we extract the model elements that have been modified by the
reconfigurations. In Figure 6, the modified model elements are the
ones in bold. The texts for the LSI documents are the names and
values of the properties and methods of each model element.

In our work, the LSI documents are model elements, i.e., a docu-
ment of text is generated from the text of the model elements that
have been modified by the reconfiguration. The query is constructed
from the text that appears in the bug description. If the terms used
for the model elements and the bug description differ too much, the
LSI will not work. Therefore, the text from the documents (model
elements) and the text from the query (bug description) are ho-
mogenized by applying well-known Natural Language Processing
techniques (tokenizing, Parts-of-Speech Tagging, and Lemmatiz-
ing) to reduce this gap. If the languages used differ too much, other

E. Algorithm for Bug Localization in the Reconfigurations of MRT

techniques such as manual annotation of the model elements could
be applied at the expense of increasing the effort.

The union of all the keywords extracted from the documents
(model elements) and from the query (bug description) are the
terms (rows) used by our LSI fitness. Each column is one of the
model elements that have been modified by the reconfiguration.
The last column is the query obtained from the bug description of
the user. Each row is one of the terms extracted from the corpuses
of text composed by all of the model elements and the query itself.
Each cell has the number of occurrences of each of the terms in the
model elements.

Once the matrix is built, we normalize and decompose it into a
set of vectors using a matrix factorization technique called Singular
Value Decomposition (SVD) [18]. One vector that represents the
latent semantics of the document is obtained for each model frag-
ment and the query. Finally, the similarities between the query and
each model fragment are calculated as the cosine between the two
vectors. The fitness value that is given to each model fragment is
the one that we obtain when we calculate the similarity, obtaining
values between -1 and 1.

4.2.3 Selection. To select individuals, we use stochastic univer-
sal sampling (SUS) [5]. This technique of selection of an individual
is directly proportional to its relative fitness in the population. SUS
is a random selection algorithm which gives a higher probability of
selection to the fittest solutions while still giving a chance to every
solution.

In each iteration of the algorithm, SUS is used to select indi-
viduals from the population (P,) for the next generation of the
population (Pp+1). The selected individuals will be the ones that
generate the next individuals using genetic operations.

4.2.4 Genetic operators. To better explore the search space, the
crossover and mutation operators are defined:

e Crossover: we use a single, random, cut-point crossover. It
starts by selecting and splitting at random two parent solu-
tions. When two parent individuals are selected, a random
cut point is determined to split them into two sub-vectors.
Then, the crossover creates two child solutions by putting,
for the first child, the first part of the first parent with the
second part of the second parent, and, for the second child,
the first part of the second parent with the second part of
the first parent.

Each solution has a length limit in terms of number of re-
configurations. When applying the crossover operator, the
new solution may have the minimum length between the
two parents. Then, the crossover operator must enforce the
length limit constraint by eliminating some reconfiguration
rules.

Figure 7 shows an example of applying the crossover op-
erator. In this example, Parent 1 (P1) and Parent 2 (P;) are
combined to generate two new solutions. The upper sub-
vector of P; is combined with the bottom sub-vector of P, to
form Child 1, and the bottom sub-vector of P; is combined
with the upper sub-vector of P, to form Child 2.

e Mutation: This operator consists of randomly changing one
or more reconfigurations in the vector of reconfigurations.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

Parent 1 Child 1 Child 1
R1 R1 R1
R21 R5 R12

Mutation
R3 R16 R16

Parent 2 Crossover Child 2 Child 2
R14 R14 R2
R5 R21 » R21

Mutation
R16 R3 R6

Figure 7: Crossover and mutation operators applied to recon-
figurations

Given an individual, the mutation operator first randomly
selects some positions in the vector representation of the
individual. Then, the selected dimensions are replaced by
other reconfiguration rules.

Figure 7 shows an example of applying the mutation operator.
In Child 1, the mutation operator replaces dimension number
two (R5 by R12), while in Child 2, the mutation operator
replaces dimensions number one and three (R14 and R3 by
R2 and R6).

When creating the sequence of reconfigurations, we do not guar-
antee that they are feasible and that they can be applied. However,
this could be solved by applying some repair operations that are
out of the scope of this paper.

As a result, new reconfiguration sequences are created. In other
words, the new reconfiguration sequences represent other possible
solutions that can trigger the bug for the specific bug being located.

Overall, the aim of the approach is to find the most relevant
reconfiguration sequence that triggers the bug described by the
bug report. To do so, the algorithm of EBRo performs a search
guided by a fitness function. This search is done among the different
reconfiguration sequences (previously obtained by applying the
mutation and crossover operations) that could conform to the bug
description.

5 EVALUATION

This section presents the evaluation of our approach: the oracle
preparation, the experimental setup, the description of the case
studies where we applied the evaluation, the obtained results, the
statistical analysis, the discussion of the results, and the threats to
the validity of our work.

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

To evaluate the approach, we applied it to two long-living in-
dustrial case studies from two of our partners: BSH, the leading
manufacturer of home appliances in Europe; and CAF, an interna-
tional provider of railway solutions all over the world.

5.1 Oracle preparation

The oracle is the ground truth and is used to compare the results
provided by the EBRo approach, the baseline, and a random search
(RS) that works as sanity check. The baseline is the approach used by
our industrial partner for bug localization [14]. A bug can be seen as
an unwanted functionality, and a feature represents a functionality.
For this reason, the feature localization approach presented in Font
et. al [14] can be used for bug localization. Even though it was
designed with a more general purpose in mind (feature localization),
said approach is the best bug localization technique available to
our industrial partner.

To prepare the oracle, our industrial partner provided us with
the bug reports associated to bugs that have occurred in the product
models. These bug reports contain natural language bug descrip-
tions, the approved reconfigurations that trigger the target bugs
and the model fragments that contain the bugs.

5.2 Experimental setup

This experiment evaluates whether or not the information found in
the reconfiguration sequences improves the bug localization results.
In addition, we compare the EBRo approach with the baseline [14]
and with a random search (RS) sanity check. If RS outperforms an
intelligent search method, we can conclude that there is no need to
use a metaheuristic search.

The inputs of the evaluation process provided by our industrial
partner are the models of the induction hobs, the entire set of recon-
figuration rules, and the bug reports. The models, reconfiguration
rules, and bug descriptions are used to run the EBRo and RS ap-
proaches, while the models and descriptions are used to run the
baseline approach. We run each of the approaches and obtain a
ranking of solutions that we can compare with an oracle in order
to check accuracy. From the EBRo and RS approaches, we obtain
reconfiguration sequences as solutions while from the baseline, we
obtain model fragments as solutions.

Therefore, in order to compare the baseline and RS approaches
against EBRo, we take the best solutions from the three approaches
and compare them to the actual solution (from the oracle) that
contains the trigger of the target bug in order to get a confusion
matrix.

A confusion matrix is a table that is often used to describe the
performance of a classification model (in this case, EBRo, the base-
line, and RS) on a set of test data (the solutions) for which the true
values are known (from the oracles). In our case, each solution
that is output by the EBRo and the RS approaches is a sequence of
reconfigurations composed of a subset of reconfigurations that are
present in the sequence that triggers the bug. Since the granularity
will be at the level of reconfigurations, the presence or absence of
each reconfiguration rule will be considered as a classification. In
the same way, each solution outputted by the baseline approach is
a model fragment composed of a subset of the model elements that
are present in the product model (where the bug is being located).

Lorena Arcega, Jaime Font, and Carlos Cetina

Since the granularity will be at the level of model elements, the
presence or absence of each model element will be considered as a
classification. Therefore, our confusion matrices will distinguish
between two values: TRUE (presence), and FALSE (absence).

The comparison process contrasts a result from one of the eval-
uated approaches with the ground truth from the oracle. We obtain
a confusion matrix for each of the solutions predicted by each of
the approaches. The confusion matrix arranges the results of the
comparison into four categories:

e True positive (TP): an element present in the predicted solu-
tions that is also present in the actual solution,

o True Negative (TN): an element not present in the predicted
solution that is not present in the actual solution,

e False Positive (FP): an element present in the predicted solu-
tion that is not present in the actual solution, and

e False Negative (FN): an element not present in the predicted
solution that is present in the actual solution.

The confusion matrix holds the results of the comparison be-
tween the predicted results and the actual results. The result of
the sum of all the categories (TP+TN+FP+FN) is the number of
dimensions (n) of the vector that contains the predicted solution.
However, in order to evaluate the performance of the approach,
it is necessary to extract some measurements from the confusion
matrix. Therefore, some performance measurements are derived
from the values in the confusion matrix. Specifically, we create a
report that includes four performance measurements (recall, preci-
sion, F-measure, and MCC) for each of the test cases for EBRo, the
baseline, and the RS approach.

Recall measures the number of elements of the solution that
are correctly retrieved by the proposed solution and is defined as

follows: p
Recall = ———— 1
AT TPYEN W

Precision measures the number of elements from the solution
that are correct according to the ground truth (the oracle) and is
defined as follows:

TP

Precision = ————— 2
recision = o0 (2)

F-measure corresponds to the harmonic mean of precision and
recall and is defined as follows:
Precision * Recall

F-measure =24 ——M— 3)
Precision + Recall

Recall values can range between 0% (i.e., no single element from
the actual solution is present in the predicted solution) to 100%
(i.e., all the elements from the actual solution are present in the
predicted solution).

Precision values can range between 0% (i.e., no single element
from the predicted solution is present in the actual solution) to
100% (i.e., all the element from the predicted solution are present
in the actual solution). A value of 100% precision and 100% recall
implies that both the predicted solution and the actual solution are
the same.

However, none of these measures correctly handle negative ex-
amples (TN). MCC is a correlation coefficient between the observed

E. Algorithm for Bug Localization in the Reconfigurations of MRT MODELS ’18, October 14-19, 2018, Copenhagen, Denmark
BSH CAF
° T T T T T T ° T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Precision (%)

Precision (%)

40 60 80
I

Baseline
Recall (%)

20
1

Recall (%)
40 60 80
Il Il
.

20
I

T T T T T T
0 20 40 60 80 100

Precision (%)

T T T T T T
0 20 40 60 80 100

Precision (%)

60 80 100
1 1 1

RS
Recall (%)
40

20
1

80 100
I I

60
I

Recall (%)
40

40 60 80 100
Precision (%)

0 20 40 60 80 100
Precision (%)

Figure 8: Mean recall and precision for EBRo, the baseline and the RS approaches in BSH and CAF

and predicted binary classifications that takes into account all of the
observed values (TP, TN, FP, FN). MCC is a balanced measure which
can be used even if the search space and the predicted solution are
of very different sizes [8]. For this reason, MCC is one of the best
measures for describing a confusion matrix [31]. It is defined as
follows:

TP«TN — FP « FN

C =
(TP + FP)(TP + FN)(TN + FP)(TN + FN) @

5.3 Case studies

5.3.1 BSH. The first case study where we apply our evaluation
process is BSH (already presented in Section 2). The oracle is com-
posed of 46 induction hob models and its revisions over time where,
on average, each product model is composed of more than 500 ele-
ments. Our industrial partner provided us with documentation of 37
bug reports, the approved reconfiguration sequences that triggers
the bugs and the model fragments that contain the bugs. For each
of the 37 bugs, we created a test case that includes the initial model,
the set of reconfiguration rules and the model fragment where that
bug was manifested and a bug description, all obtained from the
documentation.

For this case study, we executed 30 independent runs for each
of the 37 test cases for each approach (as suggested by [4]), i.e., 37
(bugs) * 3 (approaches) * 30 repetitions = 3330 independent runs.

5.3.2 CAF. The second case study where we apply our evalu-
ation process is CAF. Their trains can be seen all over the world
and in different forms (regular trains, subway, light rail, monorail,
etc.). A train unit is furnished with multiple pieces of equipment
through its vehicles and cabins. These pieces of equipment are of-
ten designed and manufactured by different providers, and their
aim is to carry out specific tasks for the train. Some examples of
these devices are: the traction equipment, the compressors that feed
the brakes, the pantograph that harvests power from the overhead
wires, or the circuit breaker that isolates or connects the electri-
cal circuits of the train. The control software of the train unit is
in charge of making all the equipment cooperate to achieve the
train functionality while guaranteeing compliance with the specific
regulations of each country.

The DSL of our industrial partner has the required expressiveness
to describe the interaction between the main pieces of equipment
installed in a train unit and their reconfigurations at runtime. Ex-
amples of reconfigurations at runtime can be coupling (when two
trains are coupled together to increase the transport capacity or to

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

rescue a train that is damaged) or converter assistance (allow the
passing of current from one converter to equipment assigned to its
peers in case of system overload or failure).

Again, we extract an oracle that is composed of 23 trains (and
its revisions over time) where each product model is composed
of more than 1200 elements on average. They provided us with
documentation of 56 bug reports, the approved reconfiguration
sequences that triggers the bugs and the model fragments that
contain the bugs. For each of the 56 bugs, we created a test case
that includes the initial model, the set of reconfiguration rules and
the model fragment where that bug was manifested and a bug
description, all obtained from the documentation.

For this case study, we executed 30 independent runs for each
of the 56 test cases for each approach (as suggested by [4]), i.e., 56
(bugs) * 3 (approaches) * 30 repetitions = 5040 independent runs.

5.4 Results

In this section, we present the results obtained for each case study
in EBRo, the baseline and the RS. Figure 8 shows the charts with
the recall and precision results for the industrial domain of BSH
(left column) and CAF (right column). A dot in a graph represents
the average result of precision and recall for each bug (37 bugs in
BSH and 56 bugs in CAF) for the 30 repetitions. The first row of
charts shows the results of EBRo, the second row of charts shows
the results of the baseline approach, and the third row of charts
shows the results of the RS approach.

Table 1: Mean values and standard deviations for precision,
recall, F-Measure and MCC for each approach and each case
study

EBRo Baseline RS

Recall + (o) 83.40 + 14.28 72.51 + 14.07 35.19 + 4.30

% Precision + (0) 78.20 + 9.41 63.34 £9.95 40.22 £ 6.52
A F-measure = (o) 79.96 £9.33 66.43 +7.47 37.05 + 3.07
MCC + (o) 0.78 £0.10 0.63 £ 0.08 0.31 £ 0.04
Recall + (0) 80.12+8.22 7094 +9.52 41.87 +5.66
% Precision + (0) 76.35 + 12.14 65.55 = 11.26 38.81 * 6.64
O F-measure + (o) 77.49 + 7.81 67.26 £ 737 39.79 £ 4.44
MCC + (o) 0.75 £ 0.08 0.64 £ 0.08 0.33 £ 0.05

Table 1 shows the mean values of recall, precision, F-measure,
and MCC for the EBRo, baseline, and RS approaches in each case
study. The EBRo approach obtains the best results in recall, preci-
sion, and MCC, providing an average value of 83.40% in BSH and
80.12% in CAF in recall, 78.20% in BSH and 76.35% in CAF in pre-
cision, and 0.78 in BSH and 0.75 in CAF in MCC. The second best
results are obtained by the baseline, providing an average value
of 72.51% in BSH and 70.94% in CAF in recall, 63.34% in BSH and
65.55% in CAF in precision, and 0.63 in BSH and 0.64 in CAF in
MCC. The RS approach provided an average value of 35.19% in
BSH and 41.87% in CAF in recall, 40.22% in BSH and 38.81% in CAF
in precision, and 0.31 in BSH and 0.33 in CAF in MCC. In terms
of recall, precision, and MCC, EBRo outperforms the rest of the
approaches.

Lorena Arcega, Jaime Font, and Carlos Cetina

5.5 Statistical Analysis

Statistically significant differences can be obtained even if they are
so small as to be of no practical value [4]. The goals of our statistical
analysis are: (1) to provide formal and quantitative evidence (sta-
tistical significance) that EBRo does in fact have an impact on the
comparison metrics (i.e., that the differences in the results were not
obtained by mere chance); and (2) to show that those differences
are significant in practice (effect size).

5.5.1 Statistical significance. Since our data does not follow a
normal distribution in general, our analysis requires the use of
non-parametric techniques. The Quade test shows that it is more
powerful than the others when working with real data [15]. This
tests provide a probability value, p — Value. The p — Value obtains
values between 0 and 1. It is accepted by the research community
that a p — Value under 0.05 is statistically significant [4]. The p —
Values obtained in the test are well below 0.05. Consequently, we
can state that there are significant differences among the algorithms
for the four performance indicators.

In addition, we perform a post hoc analysis. This kind of anal-
ysis performs a pair-wise comparison among the results of each
algorithm, determining whether statistically significant differences
exist among the results of a specific pair of algorithms. Specifically,
we apply the Holm’s Post Hoc analysis, as suggested by Garcia et
al. [15].

Table 2: The p — Values of Holm’s post hoc analysis for each
pair of algorithms and each case study

EBRo vs Baseline EBRo vs RS Baseline vs RS

- Recall 0.022 1.1x107 14 1.7x10710
@ Precision 2.9x1077 < 2.2x10716 5.2x10710
McCC 2.9x1078 < 2.2x10716 3.0x10710
o, Recall 3.8x107° < 2.2x1071 9.2x10715
S Precision 3.0x107° < 2.2x10716 1.2x10714
MCC 1.4x10710 < 2.2x10716 1.4x10714

Table 2 shows the p — Values of Holm’s post hoc analysis. All
of the p — Values shown in this table are smaller than their cor-
responding significance threshold value (0.05), indicating that the
differences in performance between the algorithms are significant.

5.5.2 Effect size. For a non-parametric effect size measure, we
use Vargha and Delaney’s A1, [37]. A1, measures the probability
that running one approach yields higher values than running an-
other approach. If the two approaches are equivalent, then A1, will
be 0.5.

Table 3 shows the values of the size effect statistics. The largest
differences were obtained between EBRo and the RS approach,
where EBRo achieves better results all of the times. When compar-
ing EBRo and the baseline, the differences are not so large, with
EBRo achieving better results in around 80% of the times. EBRo
obtained the best performance results among the three evaluated
approaches (see Table 1).

The performed statistical analysis indicated that EBRo outper-
forms the rest of the approaches in terms of recall, precision, and
MCC. Overall, these results confirm that the use of EBRo against
the baseline and the RS approaches has an actual impact.

E. Algorithm for Bug Localization in the Reconfigurations of MRT

Table 3: The A, statistic for each pair of algorithms and each
case study

EBRo vs Baseline EBRo vs RS Baseline vs RS

= Recall 0.7166 1 1

<£ Precision 0.8524 1 0.9912
MCC 0.8703 1 1

- Recall 0.7548 1 1

& Precision 0.7411 1 0.9825
MCC 0.8324 1 0.9992

5.6 Discussion

Our results confirm that the EBRo and the baseline approaches
are better than random search based on the four metrics (recall,
precision, F-measure, and MCC) on both the BSH and CAF case
studies. Through this study, we concluded that there is empirical
evidence to support the significance of the results of our algorithm.
Thus, an intelligent algorithm is required to find good solutions to
perform bug localization in reconfigurations of models at runtime.

In addition, the solutions obtained with the EBRo approach are
better than the ones obtained with the baseline approach. The
search space with the EBRo approach is driven by the reconfigura-
tions, as it happens at runtime. While the baseline explores a much
larger search space, any model conforms to the metamodel, and
does not take into account the runtime reconfigurations.

However, the EBRo and baseline approaches are complementary.
In the real world, before locating a bug, in most cases we do not
know if the reconfigurations are the source of the bug for sure.
Faced with a new bug, our recommendation is to start searching
with EBRo, since EBRo not only obtains the configuration of the
model where the bug occurs, but also provides the sequence of
reconfigurations that leads to that particular configuration. In case
the results obtained by EBRo are not useful, the baseline can be
launched, since it explores a larger solution space than EBRo.

We realized that none of the approaches obtain a perfect solu-
tion. One of the issues that we detected that cause this outcome is
the vocabulary mismatch. That means that for a specific concept,
the terms used in the bug description are different from the terms
used in the models. Nevertheless, this issue could be solved by
augmenting the Natural Language Processing (NLP) with a dictio-
nary of synonyms. In the same way, we have also detected cases in
which in-house terms are used. Therefore, the regular dictionary
of synonyms would not work in this case. This suggests that the
dictionary of synonyms should be refined by domain engineers
to include in-house terms. Another issue occurs when a bug de-
scription is incomplete. Omitting words in the bug descriptions
negatively influences the fitness value of textual similarity since the
fitness value of textual similarity is based on the co-occurrence of
terms. This suggests that we must make the engineers aware of this
issue. They should know that in cases in which the results obtained
do not have enough quality, they can reformulate the descriptions
of the bugs making the implicit knowledge explicit.

In addition, some solutions are invalid sequences of reconfig-
urations that, theoretically, are not going to take place since the
necessary context changes can never occur. In our future work,

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

we will study the introduction of crossover and mutation opera-
tors that, by construction, do not generate invalid sequences. We
will also study a repair operation for invalid sequences. Although
we are interested in the influence of narrowing the search space,
we believe that we must maintain the possibility of generating
sequences of theoretically invalid reconfigurations. For instance,
induction hobs are sold all over the world and sometimes they are
used in unforeseen ways, causing extremely unlikely sequences of
reconfigurations to end up happening. These otherwise impossible
reconfigurations are potential sources of bugs.

Results suggest that there is a relationship between the use of
models at runtime and the quality of the solutions. The results are
better the more you have specified the reconfigurations using the
models at runtime. That is, the fewer flow control operators (e.g.,
ifs) and auxiliary variables are used to reconfigure, the better. This
finding suggests that the models at runtime pay off when doing
bug localization. However, the finding must be taken cautiously,
since our evaluation was not designed to verify the influence of
models at runtime on the quality of the solutions, but to compare
the performance of different approaches in the location of bugs in
the reconfigurations of models at runtime.

Finally, we have applied our EBRo approach to two real industrial
cases, BSH and CAF, which are from very different domains. In
both scenarios we have obtained quality results. Hence, the findings
suggest that EBRo does not rely on the domain, since results depend
on the reconfigurations themselves.

5.7 Threats to Validity

In this section, we present some of the threats to validity. We follow
the guidelines suggested by De Oliveira et. al [11] to identify those
that are applicable to this work.

Conclusion validity threats: We have identified three threats of
this type. To address the not accounting for random variation threat,
we considered 30 independent runs for each bug with each al-
gorithm. In this paper we employed standard statistical analysis
following accepted guidelines [4] to avoid the lack of formal hypoth-
esis and statistical tests threat. To address the lack of good descriptive
analysis threat, we have used precision, recall, F-measure and MCC
metrics to analyze the confusion matrix obtained from the experi-
ments; however, other metrics could be applied. In addition, some
works argument that the use of the Vargha and Delaney A12 metric
can be miss-representative [28] and that the data should be pre-
transformed before applying them. We did not find any use case
for data pre-transformation that applies to our case study.

Internal validity threats: We have identified two threats of this
type. In this paper, we used standard values for the algorithms to
avoid the poor parameter settings threat. These values have been
tested in similar algorithms for feature localization [22]. In addition,
the choice of the k value in the application of SVD can produce
suboptimal accuracy when using LSI for software artifacts [29].
However, we plan to evaluate all of the parameters of our algorithm
in a future work. The evaluation of this paper was applied to two
industrial case studies from two of our partners, BSH and CAF,
hence the lack of real problem instances threat is addressed.

Construct validity threats: We have identified one threat of this
type. To address the lack of assessing the validity of cost measures

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

threat, we performed a fair comparison among EBRo, the baseline
and the random approaches by generating the same number of
reconfiguration sequences and using the same number of fitness
evaluations.

External validity threats: We have identified two threats of this
type. The lack of a clear object selection strategy and lack of eval-
uations for instances of growing size and complexity threats are
addressed by using two industrial case studies from two of our part-
ners, BSH and CAF. Our instances are collected from real-world
problems. In addition we have two different domains (induction
hobs and trains) with different size and complexity.

6 RELATED WORK

In recent years, the research efforts in Search-Based Software Engi-
neering (SBSE) in models at runtime are increasing.

McKinley et al. [26] applied SBSE to address uncertainty in adap-
tive systems. They integrated evolutionary computation into the
development and runtime support of high-assurance, self-adaptive
software. Their approach starts with requirements and moves through
reconfigurable designs at runtime. Their work has been validated
using experiments conducted in the context of robotics.

Andrade and de A Macédo [1] have proposed a search-based
approach for domain-independent representation of design spaces.
Their approach (DuSE-MT) capture the most prominent design
dimensions, their associated variation points, and the architecture
changes requires to realize each solution. Their solutions are evalu-
ated in terms of four quality metrics related to self-adaptation.

Williams et al. [39] presented a model-driven approach for adapt-
ing to dynamic runtime environments using metaheuristic opti-
mization techniques. The metaheuristics exploit metamodels that
capture the important components in the adaptation process. They
contextualize the approach using an example and analyze different
ways of applying the metaheuristic algorithms for discovering an
optimal model of the case study’s environment.

All of the above works present approaches that combine SBSE
and models at runtime. However, these research efforts are focused
on finding the optimal reconfigurations. In contrast, our work is
focused on localizing bugs appearing as the result of dynamic re-
configurations of the system due to context changes.

In addition, there are other SBSE approaches for feature local-
ization in models that, although not designed to locate bugs, could
potentially be applied to that extent.

Lopez-Herrejon et al. [22] evaluate three standard search-based
techniques with three objective functions in order to calculate the
relationships of a feature model. Their results are slightly better for
hill climbing than for the evolutionary algorithm, but they are not
statistically significant when the first two objective functions are
applied.

Harman et al. [17] performed a survey on the topic of search-
based software engineering applied to Software Product Lines
(SPLs). They present an overview of recent articles that are classified
according to themes such as configuration, testing, or architectural
improvement. Lopez-Herrejon et al. [21] performed a preliminary
systematic mapping study at the connection of search-based soft-
ware engineering and SPL. They categorized the articles using a
known framework for SPL development.

Lorena Arcega, Jaime Font, and Carlos Cetina

Font et al. [13, 14] propose two approaches that use evolutionary
algorithms to locate features in a model. They introduce a genetic
operator for mutation that can work with a single model fragment
and a crossover operator that combines two different product mod-
els. The results show that the use of a genetic algorithm allows
the approach to provide accurate location of features in spite of
inaccurate information on the part of the user.

In contrast to our work, all these feature location works only
take into account the design time models.

In our previous work [3], we analyzed the influence of several
timespan weightings on bug localization in models. We evaluated
four timespan weightings: the most recent model modifications, the
oldest model modifications, the mean of the modification timespan
of the modified model elements, and the sum of the modification
timespan of the modified model elements. The results showed that
the use of the most recent timespan model modifications provides
the best results in bug localization. In contrast to our previous
works, our approach now takes into account the reconfigurations
of models at run-time that can trigger the bug. Our future work
includes the introduction of timespan weightings to improve the
bug localization in the reconfigurations of models at runtime.

7 CONCLUSIONS

Bug localization is a significant maintenance activity and in a sys-
tem with models at runtime, the reconfigurations that the model
undergoes at runtime due to context changes can also be a source
of bugs. In this paper, we have proposed an approach for bug local-
ization in the reconfigurations of models at runtime (EBRo). Our
approach is based on search-based software engineering, iterat-
ing on the reconfigurations search space using an evolutionary
algorithm.

We evaluated our EBRo approach in two industrial case studies,
BSH (firmware of induction hobs) and CAF (control software of
trains), and compared it with the approach that they are using for
bug localization and with a random search as sanity check. We
determined which approach produces the best results in terms of
precision, recall, F-measure, and MCC. To do this, we applied the
approaches in BSH and CAF.

Results show that the study of the reconfiguration of models
at runtime pays off for bug localization. Specifically, our EBRo ap-
proach outperforms the baseline and the random search approaches
in terms of precision, recall, and MCC, reaching average precision
and recall values of about 80% in BSH and 77% in CAF. Furthermore,
results also suggest that our approach can be applied in real world
environments. Finally, the statistical analysis of the results provides
evidence of their significance.

ACKNOWLEDGMENTS

This work has been partially supported by the Ministry of Econ-
omy and Competitiveness (MINECO) through the Spanish National
R+D+i Plan and ERDF funds under the project Model-Driven Vari-
ability Extraction for Software Product Line Adoption (TIN2015-
64397-R). We also thank ITEA3 15010 REVaMP2 Project.

E. Algorithm for Bug Localization in the Reconfigurations of MRT

REFERENCES

(1]

A

(3

=

[4

=

[10]

(11

[12]

[13]

[14]

[15

[16]

[17]

(18

[19

[20]

S. S. Andrade and R. J. de A Macédo. 2013. Toward Systematic Conveying of
Architecture Design Knowledge for Self-Adaptive Systems. In 2013 IEEE 7th In-
ternational Conference on Self-Adaptation and Self-Organizing Systems Workshops.
23-24. DOI:http://dx.doi.org/10.1109/SASOW.2013.13

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2012. CoMA: Confor-
mance Monitoring of Java Programs by Abstract State Machines. In Proceedings
of the Second International Conference on Runtime Verification (RV’11). Springer-
Verlag, 223-238. DOI:http://dx.doi.org/10.1007/978-3-642-29860-8_17

Lorena Arcega, Jaime Font, @ystein Haugen, and Carlos Cetina. 2017. On the
Influence of Modification Timespan Weightings in the Location of Bugs in Mod-
els. In Proceedings of the 26th International Conference on Information Systems
Development, ISD 2017, Larnaca, Cyprus, September 6-8, 2017.

Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s Guide to Statistical Tests
for Assessing Randomized Algorithms in Software Engineering. Softw. Test. Verif.
Reliab. 24, 3 (May 2014), 219-250. DOI:http://dx.doi.org/10.1002/stvr.1486
James E. Baker. 1987. Reducing Bias and Inefficiency in the Selection Algorithm.
In Proceedings of the Second International Conference on Genetic Algorithms on
Genetic Algorithms and Their Application. L. Erlbaum Associates Inc., 14-21.
http://dl.acm.org/citation.cfm?id=42512.42515

Nelly Bencomo, Robert France, Betty H. C. Cheng, and Uwe Afimann (Eds.).
2014. Models@run.time. Foundations, Applications, and Roadmaps. Springer
International Publishing.

Gordon Blair, Nelly Bencomo, and Robert B. France. 2009. Models@ Run.Time.
Computer 42, 10 (Oct. 2009), 22-27. DOI : http://dx.doi.org/10.1109/MC.2009.326
Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. 2017. Optimal classifier
for imbalanced data using Matthews Correlation Coefficient metric. PLOS ONE
12, 6 (06 2017), 1-17. DOI : http://dx.doi.org/10.1371/journal.pone.0177678

Ilhem Boussaid, Patrick Siarry, and Mohamed Ahmed-Nacer. 2017. A survey on
search-based model-driven engineering. Automated Software Engineering 24, 2
(01 Jun 2017), 233-294. DOI:http://dx.doi.org/10.1007/s10515-017-0215-4

Paulo Casanova, Bradley Schmerl, David Garlan, and Rui Abreu. 2011.
Architecture-based Run-time Fault Diagnosis. In Proceedings of the 5th Euro-
pean Conference on Software Architecture (ECSA’11). Springer-Verlag, 261-277.
http://dl.acm.org/citation.cfm?id=2041790.2041827

Marcio de Oliveira Barros and Arilo Claudio Dias-Neto. 2011. 0006/2011-Threats
to Validity in Search-based Software Engineering Empirical Studies. RelaTe-DIA
5,1 (2011).

Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. 2009.
Model Evolution by Run-time Parameter Adaptation. In Proceedings of the 31st In-
ternational Conference on Software Engineering (ICSE *09). IEEE Computer Society,
111-121. DOI:http://dx.doi.org/10.1109/ICSE.2009.5070513

Jaime Font, Lorena Arcega, @ystein Haugen, and Carlos Cetina. 2016. Feature
Location in model-based Software Product Lines through a Genetic Algorithm.
In 15th International Conference on Software Reuse (ICSR 2016). Limassol, Cyprus.
Jaime Font, Lorena Arcega, @ystein Haugen, and Carlos Cetina. 2016. Feature
Location in Models Through a Genetic Algorithm Driven by Information Retrieval
Techniques. In Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems (MODELS ’16). ACM, 272-282. DOI:
http://dx.doi.org/10.1145/2976767.2976789

Salvador Garcia, Alberto Fernandez, Julian Luengo, and Francisco Herrera.
2010. Advanced nonparametric tests for multiple comparisons in the design
of experiments in computational intelligence and data mining: Experimental
analysis of power. Information Sciences 180, 10 (2010), 2044 — 2064. DOI:
http://dx.doi.org/10.1016/].ins.2009.12.010 Special Issue on Intelligent Distributed
Information Systems.

Carlo Ghezzi, Andrea Mocci, and Mario Sangiorgio. 2012. Runtime Monitoring
of Functional Component Changes with Behavior Models. In Proceedings of the
2011th International Conference on Models in Software Engineering (MODELS’11).
Springer-Verlag, 152-166. DOI:http://dx.doi.org/10.1007/978-3-642-29645-1_17
M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang. 2014. Search
Based Software Engineering for Software Product Line Engineering: A Survey
and Directions for Future Work. In Proceedings of the 18th International Software
Product Line Conference - Volume 1 (SPLC '14). ACM, 5-18. DOI : http://dx.doi.org/
10.1145/2648511.2648513

Thomas K Landauer, Peter W. Foltz, and Darrell Laham. 1998. An introduction
to latent semantic analysis. Discourse Processes 25, 2-3 (1998), 259-284. DOI:
http://dx.doi.org/10.1080/01638539809545028

Meir M Lehman, JF Ramil, and Goel Kahen. 2001. A paradigm for the behavioural
modelling of software processes using system dynamics. Technical Report. Imperial
College of Science, Technology and Medicine, Department of Computing.
Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. 2007.
Feature Location via Information Retrieval Based Filtering of a Single Scenario
Execution Trace. In Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering (ASE "07). ACM, 234-243. DOIL:
http://dx.doi.org/10.1145/1321631.1321667

[21

[22

(23]

™
=)

[25]

[26

[27]

S
&,

[29

[30

‘<
)

[33

(34

[35

[36

[37

[38

(39]

[40]

MODELS ’18, October 14-19, 2018, Copenhagen, Denmark

Roberto E. Lopez-Herrejon, Javier Ferrer, Francisco Chicano, Lukas Linsbauer,
Alexander Egyed, and Enrique Alba. 2014. A Hitchhiker’s Guide to Search-Based
Software Engineering for Software Product Lines. CoRR abs/1406.2823 (2014).
Roberto E. Lopez-Herrejon, Lukas Linsbauer, José A. Galindo, José A. Parejo,
David Benavides, Sergio Segura, and Alexander Egyed. 2015. An assessment
of search-based techniques for reverse engineering feature models. Journal of
Systems and Software 103 (2015), 353 — 369. DOI:http://dx.doi.org/10.1016/j.jss.
2014.10.037

Usman Mansoor, Marouane Kessentini, Philip Langer, Manuel Wimmer, Slim
Bechikh, and Kalyanmoy Deb. 2015. MOMM: Multi-objective model merging.
Journal of Systems and Software 103 (2015), 423 — 439. DOI : http://dx.doi.org/https:
//doi.org/10.1016/j.jss.2014.11.043

Shahar Maoz and David Harel. 2011. On tracing reactive systems. Software &
Systems Modeling 10, 4 (01 Oct 2011), 447-468. DOI:http://dx.doi.org/10.1007/
510270-010-0151-2

A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic. 2004. An information retrieval
approach to concept location in source code. In Proceedings of the 11th Work-
ing Conference on Reverse Engineering. 214-223. DOI :http://dx.doi.org/10.1109/
WCRE.2004.10

Philip K. McKinley, Betty H. C. Cheng, Andres J. Ramirez, and Adam C. Jensen.
2012. Applying evolutionary computation to mitigate uncertainty in dynamically-
adaptive, high-assurance middleware. Journal of Internet Services and Applications
3,1 (01 May 2012), 51-58. DOI :http://dx.doi.org/10.1007/s13174-011-0049-4

O. Moser, F. Rosenberg, and S. Dustdar. 2012. Domain-Specific Service Selection
for Composite Services. IEEE Transactions on Software Engineering 38, 4 (July
2012), 828-843. DOI:http://dx.doi.org/10.1109/TSE.2011.43

Geoffrey Neumann, Mark Harman, and Simon Poulding. 2015. Transformed
Vargha-Delaney Effect Size. Springer International Publishing, 318-324. http:
//dx.doi.org/10.1007/978-3-319-22183-0_29

A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D. Lucia. 2016.
Parameterizing and Assembling IR-Based Solutions for SE Tasks Using Genetic
Algorithms. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1. 314-325. DOI : http://dx.doi.org/10.
1109/SANER.2016.97

Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. 2007. Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval. IEEE Transactions on
Software Engineering 33, 6 (June 2007), 420-432. DOI :http://dx.doi.org/10.1109/
TSE.2007.1016

D. M. W. Powers. 2011. Evaluation: From precision, recall and f-measure to
roc., informedness, markedness & correlation. Journal of Machine Learning
Technologies 2, 1 (2011), 37-63.

M. Revelle, B. Dit, and D. Poshyvanyk. 2010. Using Data Fusion and Web Mining
to Support Feature Location in Software. In IEEE 18th International Conference on
Program Comprehension (ICPC). 14-23. DOI : http://dx.doi.org/10.1109/ICPC.2010.
10

Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA.

Daniel Schneider and Mario Trapp. 2013. Conditional Safety Certification of
Open Adaptive Systems. ACM Trans. Auton. Adapt. Syst. 8, 2, Article 8 (July 2013),
20 pages. DOI:http://dx.doi.org/10.1145/2491465.2491467

Hui Song, Michael Gallagher, and Siobhan Clarke. 2012. Rapid GUI Development
on Legacy Systems: A Runtime Model-based Solution. In Proceedings of the 7th
Workshop on Models@Run.Time (MRT ’12). ACM, 25-30. DOI:http://dx.doi.org/
10.1145/2422518.2422523

Michael Szvetits and Uwe Zdun. 2016. Systematic literature review of the ob-
jectives, techniques, kinds, and architectures of models at runtime. Software
& Systems Modeling 15, 1 (01 Feb 2016), 31-69. DOI:http://dx.doi.org/10.1007/
$10270-013-0394-9

Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101-132. DOI : http://dx.doi.org/
10.3102/10769986025002101

Thomas Vogel and Holger Giese. 2010. Adaptation and Abstract Runtime Models.
In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS °10). ACM, 39-48. DOI:http://dx.doi.org/10.
1145/1808984.1808989

James R. Williams, Simon M. Poulding, Richard F. Paige, and Fiona Polack. 2013.
Exploring the Use of Metaheuristic Search to Infer Models of Dynamic System
Behaviour. 76-88.

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. 2016. A Survey on Software
Fault Localization. IEEE Transactions on Software Engineering 42, 8 (Aug 2016),
707-740.

http://dx.doi.org/10.1109/SASOW.2013.13
http://dx.doi.org/10.1007/978-3-642-29860-8_17
http://dx.doi.org/10.1002/stvr.1486
http://dl.acm.org/citation.cfm?id=42512.42515
http://dx.doi.org/10.1109/MC.2009.326
http://dx.doi.org/10.1371/journal.pone.0177678
http://dx.doi.org/10.1007/s10515-017-0215-4
http://dl.acm.org/citation.cfm?id=2041790.2041827
http://dx.doi.org/10.1109/ICSE.2009.5070513
http://dx.doi.org/10.1145/2976767.2976789
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1007/978-3-642-29645-1_17
http://dx.doi.org/10.1145/2648511.2648513
http://dx.doi.org/10.1145/2648511.2648513
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.1145/1321631.1321667
http://dx.doi.org/10.1016/j.jss.2014.10.037
http://dx.doi.org/10.1016/j.jss.2014.10.037
http://dx.doi.org/https://doi.org/10.1016/j.jss.2014.11.043
http://dx.doi.org/https://doi.org/10.1016/j.jss.2014.11.043
http://dx.doi.org/10.1007/s10270-010-0151-2
http://dx.doi.org/10.1007/s10270-010-0151-2
http://dx.doi.org/10.1109/WCRE.2004.10
http://dx.doi.org/10.1109/WCRE.2004.10
http://dx.doi.org/10.1007/s13174-011-0049-4
http://dx.doi.org/10.1109/TSE.2011.43
http://dx.doi.org/10.1007/978-3-319-22183-0_29
http://dx.doi.org/10.1007/978-3-319-22183-0_29
http://dx.doi.org/10.1109/SANER.2016.97
http://dx.doi.org/10.1109/SANER.2016.97
http://dx.doi.org/10.1109/TSE.2007.1016
http://dx.doi.org/10.1109/TSE.2007.1016
http://dx.doi.org/10.1109/ICPC.2010.10
http://dx.doi.org/10.1109/ICPC.2010.10
http://dx.doi.org/10.1145/2491465.2491467
http://dx.doi.org/10.1145/2422518.2422523
http://dx.doi.org/10.1145/2422518.2422523
http://dx.doi.org/10.1007/s10270-013-0394-9
http://dx.doi.org/10.1007/s10270-013-0394-9
http://dx.doi.org/10.3102/10769986025002101
http://dx.doi.org/10.3102/10769986025002101
http://dx.doi.org/10.1145/1808984.1808989
http://dx.doi.org/10.1145/1808984.1808989

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 Bug Localization in Reconfiguration Rules
	4.1 Approach Overview
	4.2 Adapting the Evolutionary Algorithm for Bug Localization in Reconfigurations of Models at Runtime

	5 Evaluation
	5.1 Oracle preparation
	5.2 Experimental setup
	5.3 Case studies
	5.4 Results
	5.5 Statistical Analysis
	5.6 Discussion
	5.7 Threats to Validity

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

