
On the Influence of Models at Run-time Traces
in Dynamic Feature Location

Lorena Arcega1,2, Jaime Font1,2 Øystein Haugen3, and Carlos Cetina1

1 Universidad San Jorge, SVIT Research Group, Zaragoza, Spain
{larcega,jfont,ccetina}@usj.es

2 University of Oslo, Department of Informatics, Oslo, Norway
3 Østfold University College, Department of Information Technology, Halden, Norway

oystein.haugen@hiof.no

Abstract. Feature Location is one of the most important and common
activities performed by developers during software maintenance and evo-
lution. In prior work, we show that Dynamic Feature Location obtains
better results working with models rather than source code. In this work,
we analyze how the criteria to create the model traces influence the Dy-
namic Feature Location results. We distinguish between two different
criteria: configuration and architecture. Our Dynamic Feature Location
approach is composed of dynamic analysis, information retrieval at the
model trace level, and information retrieval at the model level. The eval-
uation in a Smart Hotel tests whether the traces created following the
two criteria modify the results of the Feature Location by measuring
recall, precision, and the combination of both (F-measure). The results
reveal that in 75% of the cases the traces that follow the architecture
criterion outperform the traces that follow the configuration criterion.

Keywords: Models at run-time, Feature location, Reverse engineering

1 Introduction

Software maintenance often involves tedious, time-consuming activities. Lehman
et al. [15] pointed out that up to 80% of the lifetime of a system is spent on main-
tenance and evolution activities. Software maintainers spend from 50% to almost
90% of their time trying to understand a program to make changes correctly. To
understand the underlying intents of an unfamiliar system, maintainers look for
clues in both the code and the documentation [2].

Feature Location is one of the most important and common activities per-
formed by developers during software maintenance and evolution [8]. Currently,
research efforts in Feature Location are concerned with identifying software ar-
tifacts that are associated with a program functionality (a feature). In Feature
Location approaches, it is common to focus on analyzing source code.

In prior work [3] we show that, for systems based on models at run-time,
better results were obtained in Dynamic Feature Location if we analyzed the
run-time model instead of the source code. Through this work, our goal is to



2

analyze how the criteria to form the model trace influence the Dynamic Feature
Location results. We are interested in two criteria to decide when a snapshot of
the run-time model should be added to the trace: (1) configuration criterion, that
adds a snapshot of the run-time model to the trace when the model corresponds
to a target configuration of the system in a reconfiguration, and (2) architecture
criterion that adds a snapshot of the run-time model to the trace each time a
change in the run-time model is performed.

Our Dynamic Feature Location approach is composed of dynamic analysis,
information retrieval at the model trace level, and information retrieval at the
model level. As a result, our approach generates a ranking with the most relevant
model elements for the feature to be located. We implemented the second and
third steps using a method named Latent Semantic Indexing (LSI), the method
that provides better results [21, 16, 20]. LSI allows software engineers to write
queries that are relevant to the feature they want to locate. As a result, the
software engineers obtain a ranked list of model elements from the model, which
are intended to identify the parts of the model that are significant for the target
feature.

We have applied our approach to a Smart Hotel to assess its performance. The
case study presents 476 model elements in the architecture model. The evaluation
tests how the traces created following the two criteria influence the results of
the Feature Location by measuring recall, precision, and the combination of
both (F-measure). These are the most common measures for the experiments
with information retrieval methods [23, 17]. The recall, precision, and F-measure
values reveal that the traces that follow the architecture criterion obtain better
results than the traces that follow the configuration criterion in 75% of the cases.

The remainder of the paper is structured as follows. In Section 2, we present
the Smart Hotel and the model traces. In Section 3, we describe our approach for
Dynamic Feature Location with models. In Section 4, we evaluate our approach
in the Smart Hotel and we discuss the results. In Section 5, we examine the
related work of the area. Finally, we present our conclusions in Section 6.

2 Background

The running example and the evaluation of this paper are performed through
a Smart Hotel [7]. In this section we present the reconfigurations of the Smart
Hotel that are performed in response to changes in the context. For instance,
a change in the context could be determined by assessing if there is a client in
the room or not, or focusing on what activities the client may be performing
(sleeping, watching TV, etc.). In addition, this section shows the model traces
in which our approach records the execution information.

2.1 Behavior of the Smart Hotel at run-time

The Smart Hotel reconfiguration engine determines how the system should be re-
configured in response to a context change, and then it modifies the architecture



3

model accordingly. In models at run-time, a causal connection between the sys-
tem and the run-time model is defined (there is a bidirectional relation between
the source code and the run-time model). This connection allows the models
(usually the architecture model) to reflect the software state. This connection
can be achieved in different ways, however, the most used implementation is the
MAPE-K loop [13, 6]. For more details about the reconfiguration engine of the
Smart Hotel see [7].

Presence Simulation
(Nobody is in the room)

Lighting By Presence 
(The user is in the room)

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g
Presence Sensors

1

Security
Service

Presence
Simulator

Alarm

b c

e

f

TV Lights

The user
leaves the

room

Device Service Channel

Fig. 1. Smart Hotel Model Reconfigurations

Fig. 1 shows two Smart Hotel configurations according to the concrete syntax
of the architecture model of PervML [19]. Fig. 1 (left) shows a User in the room
configuration, while Fig. 1 (right) shows a Nobody in the room configuration. It
can be observed that movement sensors are used for different purposes: lighting
(left), and providing information to the security service (right). In addition, the
Occupancy simulation service is activated in the Nobody in the room configura-
tion, and the connections that are required for this service to communicate with
multimedia, lighting, and security services are established.

2.2 Model Execution traces

In our approach, the execution information is recorded by a model trace of
snapshots at run-time. Each execution trace is related to a set of snapshots of
the run-time model. In this paper we are interested in two criteria to decide when
a snapshot of the run-time model should be added to the trace: (1) configuration
criterion, and (2) architecture criterion.

In the configuration criterion, the snapshots are added to the trace when the
run-time model corresponds to a target configuration of the system in a recon-
figuration. That is, a snapshot is added when the system completes the changes
from one configuration to another. In the architecture criterion, the snapshots
are added to the trace when a change in the run-time model is performed. That
is, a snapshot is added each time a component of the run-time model is deleted



4

or created even if the model does not correspond to a target configuration of the
system.

Model Trace following the Configuration Criterion

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g

Lights

Alarm
Security
Service

TV

1

Presence
Simulator

Presence Sensors

b c

e

f

Lights

Alarm
Security
Service

TV

1

Presence
Simulator

Presence Sensors

b c

e

f

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g

Lights

Alarm
Security
Service

TV

Presence Sensors

a

g

1

Presence
Simulator

Lights

Alarm
Security
Service

TV

Presence Sensors

a

g

1

Presence
Simulator

b c

Lights

Alarm
Security
Service

TV

Presence Sensors

1

Presence
Simulator

b c

Model Trace following the Architecture Criterion

Fig. 2. Different Model Traces following the different Criterion

Fig. 2 shows two different traces for the same reconfiguration (the recon-
figuration showed in Fig. 1). The upper part shows a trace composed by the
configuration criterion. The first snapshot shows the system when there is a user
in the room, and the second snapshot shows the system when the user leaves
the room and the corresponding reconfiguration is completed. The bottom part
shows a trace composed by the architecture criterion. The first snapshot and the
last one are the same, as in the upper part of the figure. However, the rest of the
snapshots give more detail on what actions were carried out in the reconfigura-
tion from the first snapshot to the fifth one. For instance, in the second snapshot,
the Presence Simulator appears; in the third snapshot, the channels that connect
the Presence Simulator with the Multimedia Service and the Lighting Service
emerge; in the fourth snapshot, the channels that connect the Lighting Service
with the Presence Sensors are deleted; and, finally, in the fifth snapshot, the
channels that connect the Security Service with the Presence Sensors come into
sight.

3 Model based Dynamic Feature Location Approach

Fig. 3 shows an overview of our model based Dynamic Feature Location ap-
proach. It is composed of three steps: dynamic analysis, information retrieval
in the model trace, and information retrieval in a model from the model trace.
In the first step, the software engineer executes a scenario, which involves the
desired feature to be located. The execution information is recorded by a model
trace of snapshots at run-time. Then, the model trace is used as input for the
second step of our Dynamic Feature Location. Using information retrieval, the
most relevant model for the desired feature is selected from the model trace. This
model is used as input for the third step of our approach, which performs infor-
mation retrieval at the model element level. As a result, the software engineers



5

obtain a ranked list of model elements from the model, intended to identify the
parts of the model that are significant for the target feature.

Most
Relevant
Model

scenario

1. Dynamic
Analysis

2. Information
Retrieval in the

Model Trace

query

Model
Trace

Rancked
Model
Elements

3. Information
Retrieval in
the Model

Fig. 3. Overview of the Dynamic Feature Location Approach

The following subsections present each of the steps that must be carried
out in order to perform the Feature Location at the model level, following our
approach. We use the Smart Hotel presented in Section 2 throughout the different
subsections to illustrate the details with a running example.

3.1 Dynamic Analysis

Execution information is gathered via dynamic analysis, which is commonly
used in program comprehension and involves executing a software system under
specific conditions. Executing the target feature during run-time generates a
feature-specific execution trace. In other words, the input for the execution is a
scenario that runs the target feature.

The model trace generated in this step only includes the models that have
been executed in the feature-specific scenario. This model trace is the main
artifact that our approach uses to locate the target feature.

As an example, we depict a scenario where we want to fix a bug in the gradual
light of the Smart Hotel. We follow the information from the bug report to define
the scenario that executes the target feature. In this case, a simplified version
(due to space constraints) of the scenario is as follows:

’The software engineer simulates an empty Smart Hotel room. The lights are
off. The software engineer simulates that a client enters the room. The lights
gradually turn on. The software engineer simulates that the client leaves the
room, and then the lights gradually turn off.’

Our approach implies that the software engineer input is needed and of
course, results are sensitive to that input. The software engineer has to decide
on a scenario that will run the desired feature.

3.2 Information Retrieval in the Model Trace

In this step we use the model trace extracted in the previous step. In addition,
the software engineer has to formulate a query related to the feature that must
be located. The model trace and the query can be leveraged to locate the most



6

relevant model for the feature through the use of Information Retrieval (IR). IR
works by comparing a set of artifacts to a query, and ranking these artifacts by
their relevance to the query.

Typically, the query can come from textual documentation of the products,
comments in the code, bug reports or oral descriptions from the engineers. There-
fore, the query will include some domain specific terms similar to those used when
specifying the models. The knowledge of the engineers about the domain and
the models will be useful to select the query from the available sources.

There are many IR techniques that have been applied for feature location
tasks. Most of the feature location research efforts show better results when
applying Latent Semantic Indexing (LSI) [21, 16]. In addition, combining LSI
with dynamic analysis improves its effectiveness [20].

In our previous work [3] we adapted LSI, which was traditionally used in
code, in order to apply it to models. Summarizing, the text from the models
is extracted and a text corpus is created, where each document corresponds
to a model or to a subset of model elements of the model. The text corpus
is used to create a term-by-document co-occurrence matrix. As LSI does not
use a predefined grammar or vocabulary it is very robust regarding outlandish
identifier names and stop words. Users can produce queries in natural language
and the system returns a list of all the documents in the system, ranked by their
semantic similarity to the query.

We adapt each step of the LSI technique to work with the model trace. The
adaptation is performed as follows:

– Creating a corpus: Each document corresponds to a model of the model
trace extracted in the dynamic analysis. Each document (model) includes

Snapshot 1

room 1 2 0 1 2

automated 2 1 0 0 4

light 6 5 7 0 0

presence 4 2 0 0 1

intensity 0 2 1 1 0

... ... ... ... … ...

security 1 0 0 1 4

Te
rm

s

Models

Query

1

0

2

6

1

...

0

Snapshot 2 Snapshot 3 Snapshot 4 Snapshot 5

Lights

Alarm
Security
Service

TV

Presence Sensors

1

Presence
Simulator

b c

Lights

Alarm
Security
Service

TV

1

Presence
Simulator

Presence Sensors

b c

e

f

Lights

Lighting
Service

Alarm
Security
Service

TV

Multimedia
Service

Presence Sensors

a

g

Lights

Alarm
Security
Service

TV

Presence Sensors

a

g

1

Presence
Simulator

Lights

Alarm
Security
Service

TV

Presence Sensors

a

g

1

Presence
Simulator

b c

Fig. 4. Information Retrieval via Latent Semantic Indexing (LSI)



7

text from the names of the model elements and the names of the attributes
and methods of the model elements that compose that model.

– Preprocessing: The type of the attributes and the type of the parameters
in the methods are removed. Then, all the identifiers are split. For example,
’IlluminationService’ becomes ’illumination’ and ’service’. To do this, we
apply Natural Language Processing (NLP) techniques, such as tokenizing,
Parts-of-Speech (POS) tagging techniques, and stemming techniques [1, 12],
however, the details of the application of these techniques are out of the
scope of this paper.

– Indexing: In the term-by-document co-occurrence matrix, the terms (rows)
correspond to the names of the model elements and the names of the at-
tributes or methods of the model, and the documents (columns) correspond
to the models that have appeared in the model trace. Fig. 4 shows the term-
by-document co-occurrence matrix, with the values associated to our running
example.
Each row in the matrix stands for each one of the unique words (terms)
extracted from our models. Fig. 4 shows a set of representative keywords in
the domain such as ’room’, ’light’, or ’presence’ as the terms of each row.
Each column in the matrix stands for the models of the model trace. Fig.
4 shows the models of the trace in each column, such as ’Snapshot1’, which
represents the first model of the model trace.
Each cell in the matrix contains the frequency with which the keyword of its
row appears in the document denoted by its column. For instance, in Fig. 4,
the term ’light’ appears 6 times in the ’Snapshot1’ model.

– Querying: We use the bug reports to formulate the queries. Only the rel-
evant terms are taken into account, and words such as determinants and
connectors from the language are omitted.
In Fig. 4, the query column represents the words that appear in the bug
report. Each cell contains the frequency with which the keyword of its row
appears in the query. For instance, the term presence appears 6 times in the
query.

– Generating results: In our approach, each document and the query are
translated into vectors. The cosine of the angle between the query vector and
a document vector is used as a measure of the similarity of the document
to the query. The closer the cosine is to one, the more similar the document
is to the query. A cosine similarity value is calculated between the query
and each document, and then the documents are sorted according to their
similarity values. The user inspects the ranked list to decide which of the
documents are relevant to the feature.
We obtain vector representations of the documents and the query by normal-
izing and decomposing the term-by-document co-occurrence matrix using a
matrix factorization technique called Singular Value Decomposition (SVD)
[14]. SVD is a form of factor analysis, or, more properly, the mathematical
generalization of which factor analysis is a special case. In SVD, a rectan-
gular matrix is decomposed into the product of three other matrices. One
component matrix describes the original row entities as vectors of derived or-



8

thogonal factor values, another describes the original column entities in the
same way, and the third is a diagonal matrix containing scaling values such
that when the three components are matrix-multiplied, the original matrix
is reconstructed.

In this step of our approach, we only take into account the model that
presents the best similarity measure. We consider it as the most relevant model
for the feature to be located, and as such, it is used as input for the next step.

3.3 Information Retrieval in the Model

In this step we apply LSI at the model element level, considering that each model
element is a document. We apply it to the model obtained in the previous step.
This model is the most relevant model for the desired feature. However, we want
to locate the most relevant model elements for the desired feature. The result of
this step is a ranked list of model elements of the model, which are intended to
identify the parts of the model that are significant for the target feature.

To that extent, we adapted LSI to work with a model. The main differences
from the previous adaptation are the following:

– The input is one model. As such, the terms are extracted taking into account
only one model.

– The granularity of the corpus changes. In the corpus creation, each document
corresponds to a model element of the most relevant model extracted before.

For generating the results, we apply the same technique as in the previous
step (SVD). However, the result in which we are interested is different. In this
step of our approach, of all the model elements, only those model elements that
have a similarity measure greater than x must be taken into account to measure
the quality of the results. A good heuristic that is widely used is x = 0.7.
This value corresponds to a 45◦ angle between the corresponding vectors. This
threshold has yielded good results in other similar works [17, 22]. Determining a
more generally usable heuristic for the selection of the appropriate threshold is
an issue under study, over which further research is needed.

The goal of our approach is to rank the relevant model elements within the
top positions. The ranking of model elements is ordered by the values of the
cosines.

4 Evaluation: Feature Location in the Smart Hotel

We evaluate how the architecture changes recorded with the snapshots in the
model trace influence the results of Feature Location. In other words, we want
to evaluate whether all the changes produced in the architecture model when
a system reconfiguration is necessary are relevant for feature location. In order
to do this, we compare the presented model based Dynamic Feature Location



9

(A)
Smart Hotel

Run-time

Architecture
model
at

Run-time

scenario
execution

Architec.
Traces

Config.
Traces

DFL-AT

DFL-CT

input

input

output

output

DFL-AT
Ranking

DFL-CT
Ranking

Oracle

DFL-AT
R&P
Report

DFL-CT
R&P
Report

input output

input output

(B)
Dynamic Analysis

(C)
Information Retrieval

(D)
Checking Results

Fig. 5. Overview of the Evaluation process

approach using traces following the architecture criterion (DFL-AT), against the
same approach using traces following the configuration criterion (DFL-CT).

The quality of the results of Information Retrieval techniques is measured
by their recall and precision. These are two of the most common measures for
experiments with information retrieval methods [23, 17]. For a given query, recall
is the percentage of retrieved documents that are relevant to the total number of
relevant documents, while precision is the percentage of the retrieved documents
that are relevant to the total number of retrieved documents. A measure that
combines both recall and precision is the harmonic mean of precision and recall,
called the F-measure.

We defined the experimental design of our study using the Goal-Question-
Metric method (GQM) [4]. We used the template presented in [5]. The GQM
method was defined as a mechanism for defining and interpreting a set of op-
eration goals using measurements. In this evaluation, the object is our Smart
Hotel, the purpose is evaluation, the issues are the recall and precision of our
Dynamic Feature Location approach, and the context is Feature Location using
model traces. We focused on answering this research question: Do the criteria
used to form the model trace influence the results of Dynamic Feature Location?

Basili in [4] and Travassos in [24] describe four kinds of studies: in-vivo,
in-vitro, in-virtuo, and in-silico. In our case, we chose to carry out in-virtuo ex-
periments, where the real world is described through computer models. This ex-
periment involves the interaction among participants and a computerized model
of reality. The simulated environment offers major advantages regarding cost
and feasibility against replicating a real-world configuration. In addition, some
scenarios such as fires or floods that cannot be replicated in the real world can
be described and analyzed in a simulated environment.

In order to evaluate the results of our experiments, we have collected the
existing documentation about the bugs in the Smart Hotel. Each bug can be
mapped to a subset of model elements of a model, specified with the model
fragment formalization capacities of the Common Variability Language (CVL).
In other words, for each bug, we know beforehand which is the associated subset
of model elements that are involved in the bug. We use the existing knowledge
as an oracle to evaluate the results provided by DFL-AT and DFL-CT.



10

Fig. 5 shows the entire process that we followed to evaluate our approach.
For the evaluation, we used the Smart Hotel system (Fig. 5 (A)). The Smart
Hotel presents 476 model elements in the architecture model. In the evaluation
set-up, a simulated environment was used to represent the Smart Hotel.

After running the scenario that executes the feature to be located, our ap-
proach generated the model traces (Fig. 5 (B)). Then, we run two different
Feature Location scenarios, using different traces as input. DFL-AT used the
model trace that follows the architecture criterion, and DFL-CT used the model
trace that follows the configuration criterion.

DFL-AT produced a ranking of model elements (DFL-AT Ranking), and
DFL-CT produced another ranking of model elements (DFL-CT Ranking) for
the desired feature (see Fig. 5 (D)). The oracle allowed us to know how many
of the model elements in the rankings were the ones that realized the desired
feature in terms of recall, precision, and F-measure values.

The recall and precision were calculated as follows:

Recall =
RankingElements ∩OracleElements

OracleElements

Precision =
RankingElements ∩OracleElements

RankingElements

The F-measure that combines recall and precision was calculated as follows:

F −measure = 2 ∗ Precision ∗Recall

Precision + Recall

4.1 Results

We performed this evaluation with thirty bugs extracted from the documenta-
tion of the Smart Hotel. We defined the scenarios based on bug reports. On
average, the generated traces were as follows: 26 models in the trace following
the architecture criterion (DFL-AT) and 9 models in the trace following the
configuration criterion (DFL-CT).

Fig. 6 shows the recall, precision, and F-measure values for each one of the
bugs. On average, DFL-AT obtains a 74.67% recall value while DFL-CT obtains
a 64.23% recall value. The values indicate that around the 75% of the model
elements that realize the target feature are retrieved. DFL-AT improves the
recall result achieved by DFL-CT by around 10%.

Regarding the precision value, on average, DFL-AT obtains a 75.96% while
DFL-CT obtains a 65.53%. The values indicate that around the 76% of the
model elements retrieved belong to the targeted feature. Once again, DFL-AT
improves the precision result achieved by DFL-CT by around 10%.

Consequently, on average, DFL-AT obtains a 74.35% F-measure value, while
DFL-CT obtains a 63.02% F-measure value. In 75% of the cases, DFL-AT out-
performs the results of DFL-CT.



11

4.2 Discussion

Our evaluation suggests that Feature Location with model traces following the
architecture criterion obtains better results in precision, recall, and F-measure

DFL-CT DFL-AT

R
e

c
a

ll
 i

n
 %

Features

P
re

c
is

io
n

 i
n

 %

Features

F
-m

e
a

s
u

re
 i

n
 %

Features

Fig. 6. Recall, Precision and F-Measure Graphs



12

than Feature Location with model traces following the configuration criterion.
This is because the manifestation of a bug can occur in a snapshot that does not
represent a source or target configuration in a reconfiguration of the system. In
other words, a bug can be introduced in the system due to changes made in the
architecture model during a reconfiguration.

Analyzing the results, Dynamic Feature Location with model traces following
the architecture criterion does not always get the best results. The model traces
composed by the architecture criterion have more snapshots that the model
traces composed by the configuration criterion (see Section 2.2). In addition,
two consecutive snapshots of the model trace composed by the architecture cri-
terion are typically more similar that two consecutive snapshots of the model
trace composed by the configuration criterion. For instance, in the model trace
composed by the architecture criterion, a snapshot may differ from its consecu-
tive one on only a single channel.

The above indicates that, in the step through which we perform information
retrieval to extract the most representative model, the search space is larger in
the model trace composed by the architecture criterion. In addition, the fact
that the models in the trace are similar can imply similarity of terms in the
documents of the LSI, therefore causing the technique to not discriminate be-
tween some models. However, in 75% of the cases, the Dynamic Feature Location
with the model trace composed by the architecture criterion obtains better re-
sults than the Dynamic Feature Location with the model trace composed by the
configuration criterion.

Finally, when forming the traces in the architecture criterion, only the cre-
ation and deletion of model elements are taken into account. In order to obtain
better results in Feature Location, further experiments must be performed to
analyze if other updates in the model elements should be taken into account.

4.3 Threats to validity

In this section, we discuss some of the issues that might have affected the results
of the evaluation and that may limit the generalizations of the results.

The first issue is regarding whether or not the software system used in the
evaluation is representative of those used in practice. Given the scale and com-
plexity of our Smart Hotel, we consider our evaluation to be a good starting
point for representing a realistic case. However, this threat can be reduced if we
experiment with other software systems of different sizes and domains.

Another issue is the selection of the scenarios to obtain the execution trace.
Since we have extracted the information from the bug reports, we can claim
that our scenarios are good representatives of features that must be located
to solve the most common bugs of the Smart Hotel. In addition, following the
information from the bug anyone could define the scenarios. However, depending
on the chosen scenarios, the results may differ.

Since the queries formulated to generate the ranked lists depend on the bug
reports, the final results are also sensitive to the queries extracted by the software
engineers from the bug reports.



13

5 Related Work

Some approaches related to Feature Location use design-time models to extract
variability. Although they do not use models at run-time, their works are based
on extracting features using models.

Font et al. [10] show that model fragments extracted mechanically may not be
units recognizable by application engineers. They propose identifying model pat-
terns by their human-in-the-loop approach, and conceptualizing them as reusable
model fragments. Their approach provides the means to identify and extract
those model patterns and further apply them to existing product models. In
[11], the work from [10] is extended to handle situations where the domain expert
fails to provide accurate information. The authors propose a genetic algorithm
for feature location in model-based SPLs. Their comparison with other approach
without a genetic algorithm demonstrates that their approach is able to provide
solutions upon inaccurate information on the part of the domain expert while
the other fails.

Martinez et al. [18] propose an extensible framework that allows a feature to
be identified, located and extracted from a family of models. They introduce the
principles of this framework and provide insights on how it can be extended for
usage in different scenarios. As a result, the initial investment required by the
task of adopting a software product line from a family of models is reduced.

All of these works extract model fragments from a given set of models, taking
into account their commonalities and variabilities. However, these approaches do
not take into account the run-time behavior of systems, and are not focused on
Feature Location. Nevertheless, all of them can be used as a base for extracting
the model fragments that correspond to the feature to be located.

There are many more research efforts in Dynamic Feature Location tech-
niques based on source-code analysis. Some of these works combine other kinds
of analysis (i.e. information retrieval) to obtain more accurate results.

Liu et al. [16] combine information from an execution trace and from the
comments and identifiers from the source code. They executed a single scenario
which executes the desired feature. All the executed methods are identified based
on the collected trace using LSI. The result is a ranked list of executed methods
based on their textual similarity to a query.

Revelle et al. [21] apply data fusion for feature location. Their technique
combines information from textual, dynamic, and web mining analysis applied
to software. Their input is a single scenario that exercises the feature. After
running the scenario, they construct a call graph that contains only the methods
that were executed. Then, they apply a web-mining algorithm, and the system
filters out low-ranked methods. The remaining set of methods is scored using
LSI based on their relevance to the input query describing the feature.

Dit et al. [9] present a data fusion model for feature location that is based on
the idea that combining data from several sources in the right proportions will
be effective at identifying a features source code. The data fusion model defines
different types of information that can be integrated to perform feature location
including textual, execution, and dependence. Textual information is analyzed



14

by IR, execution information is collected by dynamic analysis, and dependencies
are analyzed using link analysis algorithms.

Similarly to our technique, all of these feature location techniques use infor-
mation from different sources. Although they are based on locating features in
source code, some of the ideas could be applied to our model based Dynamic
Feature Location approach to obtain more accurate results.

In addition, Arcega et al. [3] present a model-based feature location approach.
They apply dynamic analysis and information retrieval with run-time models.
The evaluation is focused in revealing that model based feature location ap-
proaches provide more accurate results. This work extends this approach chang-
ing the way the model traces are treated. Through this work, we are focused
in finding the information needed in the model traces to obtain more accurate
results in Dynamic Feature Location.

6 Conclusion

In the presented work, we analyze how the criteria to create the model traces
influence Dynamic Feature Location results. We focus on two different criteria:
(1) configuration criterion, that adds a snapshot of the the run-time model to
the trace when the model corresponds to a target configuration of the system in
a reconfiguration, and (2) architecture criterion, that adds a snapshot of the run-
time model to the trace each time a change in the run-time model is performed.
Our Dynamic Feature Location approach is composed by dynamic analysis, in-
formation retrieval at the model trace level, and information retrieval at the
model level.

Our evaluation in a Smart Hotel calculates the values of the most common
measures for experiments with information retrieval methods (recall, precision,
and F-measure). We use these values to compare Dynamic Feature Location
with traces created following the architecture criterion against Dynamic Feature
Location with traces created following the configuration criterion. The results
reveal that in 75% of the cases, Dynamic Feature Location with model traces
composed by the architecture criterion obtains better results than Dynamic Fea-
ture Location with model traces composed by the configuration criterion.

Our future work involves designing a Feature Location approach that com-
bines model traces and information about the time of the execution. In addition,
further experiments are necessary to identify other different criteria to create
model traces.

Acknowledgments

This work has been partially supported by the Ministry of Economy and Com-
petitiveness (MINECO) through the Spanish National R+D+i Plan and ERDF
funds under the project Model-Driven Variability Extraction for Software Prod-
uct Line Adoption (TIN2015-64397-R).



15

References

1. V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P. Rayson, C. Pohl,
and A. Rummler. An exploratory study of information retrieval techniques in
domain analysis. In 2008 12th International Software Product Line Conference,
pages 67–76, Sept 2008.

2. G. Antoniol and Y.-G. Gueheneuc. Feature identification: An epidemiological
metaphor. IEEE Trans. Softw. Eng., 32(9):627–641, Sept. 2006.

3. L. Arcega, J. Font, Ø. Haugen, and C. Cetina. Feature location through the combi-
nation of run-time architecture models and information retrieval. In J. Grabowski
and S. Herbold, editors, System Analysis and Modeling. Technology-Specific As-
pects of Models : 9th International Conference, SAM 2016, Saint-Malo, France,
October 3-4, 2016. Proceedings, pages 180–195. Springer International Publishing,
2016.

4. V. R. Basili. The role of experimentation in software engineering: Past, current,
and future. In Proceedings of the 18th International Conference on Software Engi-
neering, ICSE ’96, pages 442–449, Washington, DC, USA, 1996. IEEE Computer
Society.

5. V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric approach.
In Encyclopedia of Software Engineering. Wiley, 1994.

6. N. Bencomo, S. Hallsteinsen, and E. Santana de Almeida. A view of the dynamic
software product line landscape. Computer, 45(10):36–41, Oct 2012.

7. C. Cetina. Achieving Autonomic Computing through the Use of Variability Models
at Run-time. PhD thesis, Universidad Politécnica de Valencia, 2010.

8. B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source
code: A taxonomy and survey. In Journal of Software Maintenance and Evolution:
Research and Practice, 2011.

9. B. Dit, M. Revelle, and D. Poshyvanyk. Integrating information retrieval, execution
and link analysis algorithms to improve feature location in software. Empirical
Software Engineering, 18(2):277–309, 2013.

10. J. Font, L. Arcega, Ø. Haugen, and C. Cetina. Building software product lines
from conceptualized model patterns. In Proceedings of the 2015 19th International
Software Product Line Conference, SPLC ’15, Nashville, TN, USA., 2015.

11. J. Font, L. Arcega, Ø. Haugen, and C. Cetina. Feature location in model-based
software product lines through a genetic algorithm. In 15th International Confer-
ence on Software Reuse, ICSR 2016, Limassol, Cyprus, Jun 2016.

12. A. Hulth. Improved automatic keyword extraction given more linguistic knowledge.
In Proceedings of the 2003 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’03, pages 216–223, Stroudsburg, PA, USA, 2003. Association
for Computational Linguistics.

13. IBM. An architectural blueprint for autonomic computing. Technical report, IBM,
2006.

14. T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to latent semantic
analysis. Discourse Processes, 25(2-3):259–284, 1998.

15. M. M. Lehman, J. Ramil, and G. Kahen. A paradigm for the behavioural modelling
of software processes using system dynamics. Technical report, Imperial College
of Science, Technology and Medicine, Department of Computing, Sep 2001.

16. D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature location via information
retrieval based filtering of a single scenario execution trace. In Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering, ASE ’07, pages 234–243, New York, NY, USA, 2007. ACM.



16

17. A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An information retrieval
approach to concept location in source code. In Proceedings of the 11th Working
Conference on Reverse Engineering, pages 214–223, Nov 2004.

18. J. Martinez, T. Ziadi, T. F. Bissyandé, and Y. Le Traon. Bottom-up adoption of
software product lines: A generic and extensible approach. In Proceedings of the
19th International Software Product Line Conference, SPLC ’15, Nashville, TN,
USA., 2015.

19. J. Muñoz. Model Driven Development of Pervasive Systems. Building a Software
Factory. PhD thesis, Universidad Politécnica de Valencia, 2008.

20. D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Transactions on Software Engineering, 33(6):420–432,
June 2007.

21. M. Revelle, B. Dit, and D. Poshyvanyk. Using data fusion and web mining to
support feature location in software. In IEEE 18th International Conference on
Program Comprehension (ICPC), pages 14–23, June 2010.

22. H. E. Salman, A. Seriai, and C. Dony. Feature location in a collection of product
variants: Combining information retrieval and hierarchical clustering. In The 26th
International Conference on Software Engineering and Knowledge Engineering,
Hyatt Regency, Vancouver, BC, Canada, July 1-3, 2013., pages 426–430, 2014.

23. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA, 1986.

24. M. O. B. G. H. Travassos. Contributions of in virtuo and in silico experiments for
the future of empirical studies in software engineering. In In Proceedings of the
Workshop on Empirical Studies in Software Engineering (ESEIW). IEEE Com-
puter Society, 2003.


